Startseite Finite algebras of Bernoulli distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Finite algebras of Bernoulli distributions

  • Alexey D. Yashunsky EMAIL logo
Veröffentlicht/Copyright: 7. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper is concerned with sets of Bernoulli distributions which are closed under substitutions of independent random variables into Boolean functions from a given set (an algebra of Bernoulli distributions). A description of all finite algebras of Bernoulli distributions is given.


Originally published in Diskretnaya Matematika (2018) 30, N°2, 148–161 (in Russian).


Acknowledgment

The author is grateful to Professor O. M. Kasim-zade for his interest in the present paper.

  1. Funding

    This research was carried out with the financial support of the Russian Science Foundation (grant no. 14-21-00025 P).

References

[1] Bukharaev R. G., "On the controlled random generators", Veroyatnostnye metody i kibernetika. II, Sbornik rabot NIIMM im. N. G. Chebotareva pri Kazanskom universitete, Uchen. zap. Kazan. un-ta, 123, N° 6, red. R. G. Bukharaev, Izd-vo Kazanskogo un-ta, Kazan, 1963, 68–87 (in Russian).Suche in Google Scholar

[2] Kolpakov R. M., "The criterion for generating sets of rational probabilities in the class of Boolean functions", Diskretn. analiz i issled. oper., ser. 1, 6:2 (1999), 41–61 (in Russian).Suche in Google Scholar

[3] Salimov F. I., "On a system of generators for algebras over random variables", Izv. VUZov. Matem., 1981, N°5, 78–82 (in Russian).Suche in Google Scholar

[4] Skhirtladze R. L., "On the method of constructing a Boolean random variable with a given probability distribution", Diskretnyi analiz: Sb. nauch. tr. Vyp. 7, IM SO AN SSSR, Novosibirsk, 1966, 71–80 (in Russian).Suche in Google Scholar

[5] Feller W., An introduction to probability theory and its applications, 1, 2nd ed., Wiley, New York, 1957, 461 pp.Suche in Google Scholar

[6] Yashunsky A. D., On the probabilities of values of random Boolean expressions: Diss. kand. fiz.-matem. nauk., Lomonosov Moscow State University, Moscow, 2006 (in Russian).Suche in Google Scholar

[7] Lindqvist B., "Ergodic Markov chains with finite convergence time", Stochastic Processes and their Applications, 11 (1981), 91–99.10.1016/0304-4149(81)90024-7Suche in Google Scholar

Received: 2018-03-26
Revised: 2018-04-22
Published Online: 2019-08-07
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0024/html?lang=de
Button zum nach oben scrollen