Startseite Limit distributions of the Pearson statistics for nonhomogeneous polynomial scheme
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Limit distributions of the Pearson statistics for nonhomogeneous polynomial scheme

  • Maxim P. Savelov EMAIL logo
Veröffentlicht/Copyright: 7. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For a nonhomogeneous polynomial scheme, conditions are found under which the Pearson statistic distributions converge to the distribution of nonnegative quadratic form of independent random variables with the standard normal distribution.


Originally published in Diskretnaya Matematika (2017) 29, N°4, 121–129 (in Russian).


  1. Funding: This work was supported by the Russian Science Foundation under grant no.17-11-01173.

References

[1] Cramer H., Mathematical Methods of Statistics, Asia Publishing House, 1962, 590 pp.Suche in Google Scholar

[2] Chernoff H., Lehmann E.L., "The use of maximum likelihood estimates in χ2tests for goodness of fit", Ann. Math. Statist., 25:3 (1954), 579–586.10.1007/978-1-4614-1412-4_47Suche in Google Scholar

[3] Balakrishnan N., Voinov V., Nikulin M. S., Chi-Squared Goodness of Fit Tests with Applications, Academic Press, 2013, 256 pp.Suche in Google Scholar

[4] Bulinskiy A. V., Shiryaev A. N., Theory of random processes, M.: Fizmatlit, 2005 (in Russian), 408 pp.Suche in Google Scholar

[5] Wang Y. H., "On the number of successes in independent trials", Statist. Sinica, 3:2 (1993), 295–312.Suche in Google Scholar

[6] Chanda K. C., "Chi-square goodness-of-fit tests based on dependent observations", Statistical Distributions in Scientific Work, NATO Adv. Study Inst. Ser., 79, Springer, Dordrecht, 35–49.10.1007/978-94-009-8552-0_3Suche in Google Scholar

[7] Selivanov B. I., "Limit distributions of the χ2statistic of K. Pearson in a sequence of independent trials", Math. Notes, 83:6 (2008), 821–832.10.1134/S0001434608050271Suche in Google Scholar

[8] van der Vaart A. W., Asymptotic statistics, Cambridge Univ. Press, 2000, 445 pp.Suche in Google Scholar

[9] Solomon H., Stephens M. A., "Distribution of a sum of weighted chi-square variables", J. Amer. Statist. Assoc., 72:360 (1977), 881–885.10.1080/01621459.1977.10479976Suche in Google Scholar

[10] Jensen D. R., Solomon H., "A Gaussian approximation to the distribution of a definite quadratic form", J. Amer. Statist. Assoc., 67:340 (1972), 898–902.10.1080/01621459.1972.10481313Suche in Google Scholar

Received: 2017-05-15
Published Online: 2019-08-07
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2019-0021/html
Button zum nach oben scrollen