Startseite On Stone’s renewal theorem for arithmetic distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Stone’s renewal theorem for arithmetic distributions

  • Mikhail S. Sgibnev EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The well-known Stone’s renewal theorem is refined for the case of arithmetic distributions having at least one exponentially decreasing tail. A very general version of the renewal theorem for arithmetic distributions with a semi-multiplicative bound of the residual term is proved.


Note: Originally published in Diskretnaya Matematika (2017) 29,№2, 84–95 (in Russian).


Acknowledgment

The author thanks the reviewer for careful reading the manuscript and helpful comments.

References

[1] Stone C., “On moment generating functions and renewal theory”, Ann. Math. Statist., 36 (1965), 1298–1301.10.1214/aoms/1177700003Suche in Google Scholar

[2] Feller W., An Introduction to Probability Theory and Its Applications. V.2, J. Wiley & Sons, 1966, 626 pp.Suche in Google Scholar

[3] Gelfand I., Raikov D., Shilov G., Commutative Normed Rings, Chelsea Publ. Co., New York, 1964, 306 pp.Suche in Google Scholar

[4] Stone C., “On characteristic functions and renewal theory”, Trans. Amer. Math. Soc., 120 (1965), 327–342.10.1090/S0002-9947-1965-0189151-0Suche in Google Scholar

[5] Lukacs E., Characteristic Functions, 2nd ed., Charles Griffin & Co., Ltd., 1970, 350 pp.Suche in Google Scholar

[6] Loève M., Probability Theory, Van Nostrand, Princeton, New Jersey, 1955, 685 pp.Suche in Google Scholar

[7] Sgibnev M. S., “Renewal theorem in the case of an infinite variance”, Siberian Math. J., 22:5 (1981), 787–796.10.1007/BF00968075Suche in Google Scholar

[8] Sgibnev M. S., “Submultiplicative moments of the supremum of a random walk with negative drift”, Statist. Probab. Lett., 32 (1997), 377–383.10.1016/S0167-7152(96)00097-1Suche in Google Scholar

Received: 2016-12-21
Revised: 2017-05-18
Published Online: 2018-12-10
Published in Print: 2018-12-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0035/pdf?lang=de
Button zum nach oben scrollen