Startseite On the number of integer points in a multidimensional domain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the number of integer points in a multidimensional domain

  • Alexander S. Rybakov EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We provide a new upper estimate for the modulus of the difference |Λ ∩ 𝓢| − voln(𝓢)/det Λ, where 𝓢 ⊂ ℝn is a set of volume voln(𝓢) and Λ ⊂ ℝn is a complete lattice with determinant det Λ. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities.


Originally published in Diskretnaya Matematika (2017) 29,№4, 106–120 (in Russian).


References

[1] Cassels J.W.S., An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, 1957, 166 pp.Suche in Google Scholar

[2] Cassels J.W.S., An Introduction to the Geometry of Numbers, Springer-Verlag, 1959.10.1007/978-3-642-62035-5Suche in Google Scholar

[3] Leichtweiss K., Konvexe Mengen, Springer, Berlin, 1980.10.1007/978-3-642-95335-4Suche in Google Scholar

[4] Feldman N. I., Hilberťs seventh problem, M.: Nauka, 1982 (in Russian), 311 pp.Suche in Google Scholar

[5] Fikhtengoľts G.M., Differential- und Integralrechnung, VEB, Berlin, 1986.Suche in Google Scholar

[6] Shafarevich I. R., Remizov A. O., Linear Algebra and Geometry, Heidelberg, Germany, 2013, 526 pp.10.1007/978-3-642-30994-6Suche in Google Scholar

[7] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179-183.10.1112/jlms/s1-26.3.179Suche in Google Scholar

[8] Gao X., On Northcotťs theorem, Ph. D. thesis, University of Colorado, 1995.Suche in Google Scholar

[9] Henk M., Wills J. M., “A Blichfeldt-type inequality for the surface area”, Monatsh. Math., 154 (2008), 135–144.10.1007/s00605-008-0530-8Suche in Google Scholar

[10] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and essays presented to R. Courant on his 60th Birthday, Interscience Publishers, Inc., New York, 1948, 187–204.Suche in Google Scholar

[11] Lagarias J.C., Lenstra H.W., Schnorr C.P., “Korkine – Zolotareff bases and successive minima of a lattice and its reciprocial lattice”, Tech. Rept. Math. Sci. Res. Inst. 07718-86, Berkley, 1986, 122–146.Suche in Google Scholar

[12] Lenstra H.W.(Jr), “Integer programming with a fixed number of variables”, Math. Oper. Res., 8:4 (1983), 538-548.10.1287/moor.8.4.538Suche in Google Scholar

[13] Meyer M., Pajor A., “Sections of the unit ball of lpn”, J. Func. Anal., 80 (1988), 109-123.10.1016/0022-1236(88)90068-7Suche in Google Scholar

[14] Schmidt W.M., “Northcotťs theorem on heights II. The quadratic case”, Acta Arith., 70 (1995), 343-375.10.4064/aa-70-4-343-375Suche in Google Scholar

[15] Widmer M., “Counting primitive points of bounded height”, Trans. Amer. Math. Soc., 362:9 (2010), 4793-4829.10.1090/S0002-9947-10-05173-1Suche in Google Scholar

[16] Widmer M., “Lipschitz class, narrow class, and counting lattice points”, Proc. Amer. Math. Soc., 140:2 (2012), 677-689.10.1090/S0002-9939-2011-10926-2Suche in Google Scholar

Received: 2017-05-22
Published Online: 2018-12-10
Published in Print: 2018-12-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0034/html?lang=de
Button zum nach oben scrollen