Startseite Closed classes of polynomials modulo p2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Closed classes of polynomials modulo p2

  • Dmitry G. Meshchaninov EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider functions of p2-valued logic (p is prime) that may be implemented by polynomials over the ring ℤp2, and describe all closed classes that contain linear functions. It turns out that the set of these classes is countable. We also construct the lattice of such classes with respect to inclusion.


Note

Originally published in Diskretnaya Matematika (2017) 29, №3, 54–69 (in Russian).


References

[1] Yanov Yu.I., Muchnik A.A., “On the existence of k-valued closed classes without a finite basis”, Dokl.Akad. Nauk SSSR, 127:1 (1959), 44-46 (in Russian).Suche in Google Scholar

[2] Post E. L., “The two-valued iterative systems of mathematical logic”, Ann. Math. Stud., 5, Princeton Univ. Press, Princeton–London, 1941.Suche in Google Scholar

[3] Kempner A. J., “Polynomials and their residue systems”, Trans. Amer. Math. Soc., 22:4 (1921), 240–266.10.1090/S0002-9947-1921-1501173-4Suche in Google Scholar

[4] Redei L., Szele T., “Algebraisch-Zahlentheoretische Betrachtungen über Ringe. II”, Acta Math., 82 (1950), 209–241.10.1007/BF02398278Suche in Google Scholar

[5] Keller G., Olson F. R., “Counting polynomial functions (mod pn)”, Duke Math. J., 35:4 (1968), 835–838.10.1215/S0012-7094-68-03589-8Suche in Google Scholar

[6] Ayzenberg H. H., Semyon I. V., Tsitkin A. I., “The cardinality of a class of n variables k-valued logic functions representable by polynomials modulo k”, In: Multi-stable elements and their application, M.: Sov. radio, 1971, 79–83 (in Russian).Suche in Google Scholar

[7] Singmaster D., “On polynomial functions (mod m)”, J. Number Th., 6:5 (1974), 345–352.10.1016/0022-314X(74)90031-6Suche in Google Scholar

[8] Carlitz L., “Functions and polynomials (mod pn)”, Acta Arithm., 9 (1964), 66–78.10.4064/aa-9-1-67-78Suche in Google Scholar

[9] Ayzenberg H. H., Semyon I. V., “Some criteria for the representability of k-valued logic functions by polynomials modulo k”, In: Multi-stable elements and their application, M.: Sov. radio, 1971, 84–88 (in Russian).Suche in Google Scholar

[10] Rosenberg I. G., “Polynomial functions over finite rings”, Glasnik Matematiki, 10:1 (1975), 25–33.Suche in Google Scholar

[11] Meshchaninov D. G., “Some conditions for representability of functions from Pk polynomials modulo k”, Dokl. AN SSSR, 299:1 (1988), 50–53 (in Russian).Suche in Google Scholar

[12] Meshchaninov D. G., “On the second p-differences of functions of pα-valued logic”, Discrete Math. Appl., 3:6 (1993), 611–621.10.1515/dma.1993.3.6.611Suche in Google Scholar

[13] Remizov A. B., “Superstructure of the closed class of polynomials modulo k”, Discrete Math. Appl., 1:1 (1991), 9–22.10.1515/dma.1991.1.1.9Suche in Google Scholar

[14] Meshchaninov D. G., “A method for constructing polynomials of k-valued logic functions”, Discrete Math. Appl., 5:4 (1995), 333–346.10.1515/dma.1995.5.4.333Suche in Google Scholar

[15] Selezneva S. N., “A fast algorithm for the construction of polynomials modulo k for k-valued functions for composite k”, Discrete Math. Appl., 21:5-6 (2011), 651–674.10.1515/dma.2011.039Suche in Google Scholar

[16] Cherepov A. N., The superstructure of the relation-preserving class in k-valued logic over all divisor modules k, Author’s abstract diss. cand. fiz.-mat. n., M., 1986 (in Russian).Suche in Google Scholar

[17] Nechaev A. A., “A criterion for the completeness of systems of pn-valued logic functions that contain operations of addition and multiplication modulo pn”, Methods of discrete analysis in solving of combinatorial problems, 1980, № 34 (in Russian).Suche in Google Scholar

[18] Cherepov A. H., “Description of the structure of closed classes in Pk containing the class of polynomials”, Problemy kibernetiki, 1983, № 40, 5–18 (in Russian).Suche in Google Scholar

[19] Meshchaninov D. G., “Superstructures of the class of polynomials in Pk”, Math. Notes, 44:5 (1988), 950–954.10.1007/BF01158427Suche in Google Scholar

[20] Gavrilov G. P., “On the superstructure of the class of polynomials in multivalued logics”, Discrete Math. Appl., 6:4 (1996), 405–412.10.1515/dma.1996.6.4.405Suche in Google Scholar

[21] Gavrilov G. P., “On the closed classes of multivalued logic containing the polynomial class”, Discrete Math. Appl., 7:3 (1997), 231–242.10.1515/dma.1997.7.3.231Suche in Google Scholar

[22] Zaets M. V., “Classification of functions over a primary residue ring in connection with the method of coordinatewise linearization”, Prikl. diskret. matematika. Prilozhenie, 2014, № 7, 16–19 (in Russian).Suche in Google Scholar

[23] Zaets M. V., “On a class of variational-coordinate-polynomial functions over a primary residue ring”, Prikl. diskret. matematika. Prilozhenie, 2014, № 3(25), 12–27 (in Russian).10.17223/20710410/25/2Suche in Google Scholar

[24] Krokhin A. A., Safin K. L., Sukhanov E. V., “On the structure of the lattice of closed classes of polynomials”, Discrete Math. Appl., 7:2 (1997), 131–146.10.1515/dma.1997.7.2.131Suche in Google Scholar

[25] Salomaa A. A., “On infinetely generated sets of operations in finite algebra”, Ann. Univ. Turku, Ser. A, I, 1964, № 74, 1–12.10.5186/aasfm.1964.339Suche in Google Scholar

[26] Bagyinszki J., Demetrovics J., “The lattice of linear classes in prime-valued logics”, Discrete mathematics, 1982, № 7, 105–123.10.4064/-7-1-105-123Suche in Google Scholar

[27] Szendrei Á., “On closed sets of linear operations over a finite sets of square-free cardinality”, Elektr. Inform. Kybern., 1978, №14, 547–559.Suche in Google Scholar

[28] Szendrei Á., “On closed classes of quasilinear functions”, Czechoslov. Math. J., 1980, № 80, 498–509.10.21136/CMJ.1980.101699Suche in Google Scholar

[29] Lau D., “Uber abgeschlossenen Mengen linearen Funktionen in mehrvertigen Logiken”, J. Inf. Proccess. Cybern. EIK, 24:7/8 (1988), 367–381.Suche in Google Scholar

[30] Lau D., B. Schröder, “On the number of closed subsets of linear functions in 6-valued logic”, Beiträge zur Alg. und Geom., 1990, № 31, 19–32.Suche in Google Scholar

[31] Lau D., “Kongruenzen auf abgeschlossenen Mengen linearen Funktionen in mehrvertigen Logiken”, Rostock Math. Kolloq., 1990, № 43, 3-16.Suche in Google Scholar

[32] Bulatov A. A., “Polynomial reducts of modules, I. Rough classification”, Mult.-Valued Log., 33:2 (1998), 135–154.Suche in Google Scholar

[33] Lau D., Function algebras on finite sets, Springer-Verlag, 2006, 668 pp.Suche in Google Scholar

[34] Semigrodskikh A. P., Sukhanov E. B., “On closed classes of polynomials over finite fields”, Discrete Math. Appl., 7:6 (1997), 593–606.10.1515/dma.1997.7.6.593Suche in Google Scholar

[35] Darsaliya V. Sh., “Completeness conditions for polynomials with natural, integer and rational coefficients”, Fundam. Prikl. Mat., 2:2 (1996), 365–374 (in Russian).Suche in Google Scholar

[36] Mamontov A. I.Investigation of the structure of closed classes in the functional system of linear polynoms with non-negative integer quotients “, Vestnik MEI, 2006, № 6, 83–90 (in Russian).Suche in Google Scholar

[37] Mamontov A. I., Meshchaninov D. G., “The completeness problem in the function algebra of linear integer-coefficient polynomials”, Discrete Math. Appl., 20:5-6 (2010), 621–641.10.1515/dma.2010.038Suche in Google Scholar

[38] Mamontov A. I., “The relative completeness problem in the functional system of linear rational-coefficient polynomials”, Vestnik MEI, 2011, № 6, 133–142 (in Russian).10.1515/dma.2010.038Suche in Google Scholar

[39] Meshchaninov D.G., Nikitin I.V., “Functionally closed classes of polynomials preserving some equivalence on number sets”, Vestnik MEI, 2011, № 6, 14–23 (in Russian).Suche in Google Scholar

[40] Meshchaninov D.G., Nikitin I.V., “Classes in function algebras of polynomials preserving of threshold partitions of the domain”, Vestnik MEI, 2012, № 6, 132–141 (in Russian).Suche in Google Scholar

[41] Aleksiadis N. Ph., “The function algebra of polynomials with nonnegative integer coefficients”, Vestnik MEI, 2013, № 6, 125–140 (in Russian).Suche in Google Scholar

[42] Meshchaninov D.G., Nikitin I.V., “Classes of polynomials preserving partitions of their domain into segments of constant length”, Vestnik MEI, 2013, №, 147–153 (in Russian).Suche in Google Scholar

[43] Mamontov A. I., Meshchaninov D. G., “The algorithm for completeness recognizing in function algebra L(ℤ)”, Discrete Math. Appl., 24:1 (2014), 21–28.10.1515/dma-2014-0003Suche in Google Scholar

[44] Meshchaninov D. G., Nikitin I.V., “Classes of polynomials preserving generalized pointlike partitions of their infinite domain”, Mezhdunar. nauchno-issled. zhurnal, 2015, № 9-3(40), 75–79 (in Russian).Suche in Google Scholar

[45] Meshchaninov D. G., “On the first d-differences of k-valued logic functions”, Matem. voprosy kibernetiki, 1998, № 7, 265–280 (in Russian).Suche in Google Scholar

[46] Meshchaninov D. G., “On closed classes of k -valued functions that preserve the first d-differences”, Matem. voprosy kibernetiki, 1999, № 8, 219–230 (in Russian).Suche in Google Scholar

[47] Meshchaninov D. G., “On closed classes of polynomials over the ring Zk”, Proc. IX Int. Conf. “Discrete models in the control system theory, 2015, 161–163 (in Russian).Suche in Google Scholar

Received: 2017-5-5
Published Online: 2018-6-14
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0016/pdf?lang=de
Button zum nach oben scrollen