Home Biorthogonal wavelet codes with prescribed code distance
Article
Licensed
Unlicensed Requires Authentication

Biorthogonal wavelet codes with prescribed code distance

  • Alexander A. Soloviev EMAIL logo and Dmitry V. Chernikov
Published/Copyright: June 14, 2018

Abstract

We propose a scheme of construction of 2-circulant codes with given code distance on the basis of biorthogonal filters with the property of perfect reconstruction over a finite filed of odd characteristic. The corresponding algorithm for constructing biorthogonal filters utilizes the Euclidean algorithm for finding the gcd of polynomials.


Note

Originally published in Diskretnaya Matematika (2017) 29,№2, 96–108 (in Russian).


References

[1] Fekri F., McLaughlin S. W., Mersereau R. M., Schafer R. W., “Double circulant self-dual codes using finite-field wavelet transforms”, Lect. Notes Comput. Sci., 1719, 1999, 355–363.10.1007/3-540-46796-3_35Search in Google Scholar

[2] Fekri F., McLaughlin S. W., Mersereau R. M., Schafer R. W., “Error control coding using finite-field wavelet transforms”, Center for Signal Image Processing, Georgia Inst. Technol., Atlanta, 1999, 1–13.Search in Google Scholar

[3] Caire G., Grossman R.L., Poor H.V., “Wavelet transforms associated with finite cyclic groups”, IEEE Trans. Inf. Theory, 39 (1993), 1157–1166.10.1109/18.243435Search in Google Scholar

[4] Fekri F., Mersereau R. M., Schafer R. W., “Theory of wavelet transform over finite fields,” Proc. IEEE Int. Conf. Acoust. Speech, and Signal Processing (Atlanta, GA, USA), 1999, 1213–1216.10.1109/ICASSP.1999.756196Search in Google Scholar

[5] Mallat S. G., A wavelet tour of signal processing Academic Press, San Diego, CA, 1997.Search in Google Scholar

[6] Fekri F., Mersereau R. M., Schafer R. W., “Theory of paraunitary filter banks over fields of characteristic two”, IEEE Trans. Inf. Theory, 48:11 (2002), 2964–2979.10.1109/TIT.2002.804049Search in Google Scholar

[7] Phoong S.M., Vaidyanathan P.P., “Paraunitary filter banks over finite fields”, IEEE Trans. Signal Proc., 45 (1997), 1443–1457.10.1109/78.599956Search in Google Scholar

[8] Chernikov D.V., “Error-correcting codes using biorthogonal filter banks”, Sib. Elektron. Mat. Izv., 12 (2015), 704–713 (in Russian).Search in Google Scholar

[9] Daubechies I., Sweldens W., “Factoring wavelet transforms into lifting steps”, J. Fourier Anal. Appl., 4:3 (1998), 247–269.10.1007/BF02476026Search in Google Scholar

[10] Solov’yev A.A., Chernikov D.V., “Biorthogonal wavelet code in the fields of characteristic two”, Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 66–79 (in Russian).Search in Google Scholar

[11] Welch L., Berlekamp T.R., “Error correction for algebrail block codes”, U.S. Patent 4, 633, 470:Sep. 27 (1983).Search in Google Scholar

[12] Shiozaki A., “Decoding of redundant residue polynomial codes using Euclid’s algorithm”, IEEE Trans. Inf. Theory, 34:5 (1988), 1351–1354.10.1109/18.21269Search in Google Scholar

[13] Gao S., “A new algorithm for decoding Reed–Solomon codes”, Comm. Inf. Network Secur., 712 (2003), 55–68.10.1007/978-1-4757-3789-9_5Search in Google Scholar

[14] Fedorenko S.V., “A simple algorithm for decoding algebraic codes”, Inf. Upr. Sistemy, 3 (2008), 23–27 (in Russian).Search in Google Scholar

[15] MacWilliams E. J., Sloane N. J. A., The theory of error-correcting codes. Parts I, II., North-Holland, Amsterdam, 1977.Search in Google Scholar

Received: 2015-9-7
Revised: 2017-5-10
Published Online: 2018-6-14
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2018-0017/html
Scroll to top button