Abstract
Let đn be a semigroup of mappings of a set X with n elements into itself, A be some fixed subset of the set N of natural numbers, and Vn(A) be a set of mappings from đn, with lengths of cycles belonging to A. The mappings from Vn(A) are called A-mappings. We suppose that the set A has an asymptotic density ϱ > 0, and that |k : k †n, k â A, m â k â A|/n â ϱ2 as n â â uniformly over m â [n, Cn] for each constant C > 1. A number M(α) of different elements in a set {α, α2, α3, âŠ} is called an order of mapping α â đn. Consider a random mapping Ï = Ïn(A) having uniform distribution on Vn(A). In the present paper it is shown that random variable ln M(Ïn(A)) is asymptotically normal with mean
Originally published in Diskretnaya Matematika (2017) 29, â1, 136â155 (in Russian).
Funding source: Russian Foundation for Basic Research
Award Identifier / Grant number: 14-01-00318
Funding statement: This study was supported by the Russian Foundation for Basic Research, grant 14-01-00318.
References
[1] Arratia R., Barbour A. D., TavarĂ© S., âLogarithmic combinatorial structures: a probabilistic approachâ, Comb. Probab. Comput., 13:6 (2004), 916â917.10.4171/000Suche in Google Scholar
[2] Arratia R., TavarĂ© S., âLimit theorems for combinatorial structures via discrete process approximationsâ, Random Struct. Algor., 3:3 (1992), 321â345.10.1002/rsa.3240030310Suche in Google Scholar
[3] Barbour A. D., TavarĂ© S., âA rate for the Erdos-TurĂĄn lawâ, Comb. Probab. Comput., 3:2 (1994), 167â176.10.1017/S0963548300001097Suche in Google Scholar
[4] Bender E. A., âAsymptotic methods in enumerationâ, SIAM Rev., 16:4 (1974), 485â515.10.1137/1016082Suche in Google Scholar
[5] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp.Suche in Google Scholar
[6] Bogdanas K., Manstavicius E., âStochastic processes on weakly logarithmic assembliesâ, Analytic and Probabilistic Methods in Number Theory. Kubilius Memorial Volume, eds. A. Laurincikas et al, TEV, Vilnius, 2012, 69â80.Suche in Google Scholar
[7] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., âAsymptotic normality of some variables connected with the cyclic structure of random permutationsâ, Math. USSR-Sb., 28:1 (1976), 107â117.10.1070/SM1976v028n01ABEH001642Suche in Google Scholar
[8] Volynets L. M., âAn example of nonstandard asymptotic behaviour of the number of permutations with constraints on the cycle lengthsâ, Sluchainye processy i ih primen., Mezvuz. sborn. MIEM, Moscow, 1989, 85â90 (in Russian).Suche in Google Scholar
[9] Gnedin A., Iksanov A., Marynych A., âA generalization of the ErdosâTurĂĄn Law for the Order of Random Permutationâ, Comb. Probab. Comput., 21:5 (2012), 715â733.10.1017/S0963548312000247Suche in Google Scholar
[10] Grusho A. A., âProperties of random permutations with constraints on the maximum cycle lengthâ, Probab. Meth. Discrete Math., Proc. Third Int. Petrozavodsk Conf., VSP/TVP, Utrecht/Moscow, 1993, 459â469.Suche in Google Scholar
[11] DĂ©nes J., âOn transformations, transformation-semigroups and graphsâ, Theory of Graphs, Proc. Colloq. (Tihany, 1966), Academic Press, New York, 1968, 65â75.Suche in Google Scholar
[12] DĂ©nes J., âConnections between transformation semigroups and graphsâ, Theory of Graphs, Internat. Sympos. (Rome, 1966), Gordon and Breach, New York, 1967, 93â101.Suche in Google Scholar
[13] DĂ©nes J., âSome combinatorial properties of transformations and their connections with the theory of graphsâ, J. Comb. Theory, 9:2 (1970), 108â116.10.1016/S0021-9800(70)80017-5Suche in Google Scholar
[14] Erdos P., TurĂĄn P., âOn some problems of a statistical group-theory. Iâ, Z. Wahrscheinlichkeitstheorie verw. Geb., 4 (1965), 175â186.10.1007/BF00536750Suche in Google Scholar
[15] Erdos P., TurĂĄn P., âOn some problems of a statistical group-theory. IIâ, Acta Math. Acad. Sci. Hungar., 18:1-2 (1967), 151â163.10.1007/BF02020968Suche in Google Scholar
[16] Erdos P., TurĂĄn P., âOn some problems of a statistical group-theory. IIIâ, Acta Math. Acad. Sci. Hungar., 18:3-4 (1967), 309â320.10.1007/BF02280290Suche in Google Scholar
[17] Erdos P., TurĂĄn P., âOn some problems of a statistical group-theory. IVâ, Acta Math. Acad. Sci. Hungar., 19:3-4 (1968), 413â435.10.1007/BF01894517Suche in Google Scholar
[18] Ewens W. J., âThe sampling theory of selectively neutral allelesâ, Theor Popul Biol., 3:1 (1972), 87â112.10.1016/0040-5809(72)90035-4Suche in Google Scholar
[19] Hansen J. C., Jaworski J., âLocal properties of random mappings with exchangeable in-degreesâ, Adv. Appl. Probab., 40:1 (2008), 183â205.10.1017/S0001867800002433Suche in Google Scholar
[20] Hansen J. C., Jaworski J., âRandom mappings with exchangeable in-degreesâ, Random Struct. Algor., 33:1 (2008), 105-â126.10.1002/rsa.20187Suche in Google Scholar
[21] Hansen J. C., Jaworski J., âA random mapping with preferential attachmentâ, Random Struct. Algor., 34:1 (2009), 87â111.10.1002/rsa.20251Suche in Google Scholar
[22] Hansen J. C., Jaworski J., âRandom mappings with a given number of cyclical pointsâ, Ars Comb., 94 (2010), 341â359.Suche in Google Scholar
[23] Hansen J. C., Jaworski J., âPredecessors and successors in random mappings with exchangeable in-degreesâ, J. Appl. Probab., 50:3 (2013), 721â740.10.1017/S0021900200009803Suche in Google Scholar
[24] Hansen J. C., Jaworski J., âRandom mappings with Ewens cycle structureâ, Ars Comb., 112 (2013), 307â322.Suche in Google Scholar
[25] Hansen J. C., Jaworski J., âStructural transition in random mappingsâ, Electron. J. Comb., 21:1 (2014), 1â18.10.37236/3572Suche in Google Scholar
[26] Zacharovas V., âThe convergence rate to the normal law of a certain variable defined on random polynomialsâ, Lith. Math. J., 42:1 (2002), 88â107.10.1023/A:1015077919456Suche in Google Scholar
[27] Zacharovas V., âDistribution of the logarithm of the order of a random permutationâ, Lith. Math. J., 44:3 (2004), 296â327.10.1023/B:LIMA.0000046878.72618.bbSuche in Google Scholar
[28] Zubkov A. M., âCalculation of distributions of characteristics of numbers components and cyclic points of random mappingsâ, Mat. Vopr. Kriptogr., 1:2 (2010), 5â18 (in Russian).10.4213/mvk7Suche in Google Scholar
[29] Harris B., âThe asymptotic distribution of the order of elements in symmetric semigroupsâ, J. Comb. Theory (A), 15:1 (1973), 66â74.10.1016/0097-3165(73)90036-8Suche in Google Scholar
[30] Ivchenko G. I., Medvedev Yu. I., âOn random permutationsâ Tr. Diskr. Mat., 5, M.: Phizmatlit, 2002, 73â92 (in Russian).Suche in Google Scholar
[31] Ivchenko G. I., Medvedev Yu. I., âRandom combinatorial objectsâ, Doklady Mathematics, 69:3 (2004), 344â347.Suche in Google Scholar
[32] Ivchenko G. I., Medvedev Yu. I., âRandom permutations: the general parametric modelâ Discrete Math. Appl., 16, 2006, 471â478.10.1515/156939206779238391Suche in Google Scholar
[33] Ivchenko G. I., Soboleva M. V., âSome nonequiprobable models of random permutationsâ, Discrete Math. Appl., 21:4 (2011), 397â406.10.1515/dma.2011.025Suche in Google Scholar
[34] Kalugin I. B., âA class of random mappingsâ, Proc. Steklov Inst. Math., 177:4 (1988), 79â110.Suche in Google Scholar
[35] Kolchin A. V., âEquations in unknown permutationsâ, Discrete Math. Appl., 4:1 (1994), 59â71.10.1515/dma.1994.4.1.59Suche in Google Scholar
[36] Kolchin V. F., Random mappings, Optimization Software, 1986, 206 pp.Suche in Google Scholar
[37] Kolchin V. F., âThe number of permutations with restrictions on the lengths of cycles.â, Discrete Math. Appl., 1:2 (1991), 179â 193.10.1515/dma.1991.1.2.179Suche in Google Scholar
[38] Kolchin V. F., âThe number of permutations with cycle lengths from a fixed setâ, Random graphs, vol. 2, Fourth Int. Seminar on Random Graphs and Probab. Meth. in Comb. (PoznaĆ, Poland, August 7â11, 1989), Wiley, New York, 1992, 139â149.Suche in Google Scholar
[39] Kolchin V. F., Random Graphs, Cambridge Univ. Press, Cambridge, 1999, 256 pp.10.1017/CBO9780511721342Suche in Google Scholar
[40] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig B.G. Teubner, Leipzig-Berlin, 1909, 596 pp.Suche in Google Scholar
[41] DeLaurentis J. M., Pittel B. G., âRandom permutations and Brownian motionâ, Pacific J. Math., 119:2 (1985), 287â301.10.2140/pjm.1985.119.287Suche in Google Scholar
[42] Manstavicius E., âOn random permutations without cycles of some lenghtsâ, Period. Math. Hungar., 42:1-2 (2001), 37â44.10.1023/A:1015288321931Suche in Google Scholar
[43] Manstavicius E., âA functional limit theorem on powers of random permutationsâ, Lith. Math. J., 49:3 (2009), 145â157.10.1007/s10986-009-9056-6Suche in Google Scholar
[44] Manstavicius E., âTotal variation approximation for random assemblies and a functional limit theoremâ, Monatsh. Math., 161:3 (2010), 313â334.10.1007/s00605-009-0151-xSuche in Google Scholar
[45] Manstavicius E., âOn total variation approximations for random assembliesâ, DMTCS, 23rd Int. Meet. Probab. Comb. and Asympt. Methods for the Anal. Alg. (AofAâ12) (Montreal, Canada, June 18-22, 2012), eds. Broutin N., Devroye L., 2012, 97â108.Suche in Google Scholar
[46] Manstavicius E., Petuchovas R., âPermutations without long or short cyclesâ, Electr. Notes Discr. Math., 49 (2015), 153â158.10.1016/j.endm.2015.06.023Suche in Google Scholar
[47] Manstavicius E., Petuchovas R., âLocal probabilities for random permutations without long cyclesâ, Electr. J. Comb., 23:1 (2016), #P1.58, 25 pp.10.37236/4758Suche in Google Scholar
[48] Manstavicius E., âA TurĂĄn-Kubilius inequality on mappings of a finite setâ, From Arithmetic to Zeta-Functions, Number Theoryin Memory of Wolfgang Schwarz, eds. J. Sander et al, Springer, 2016, 295â307.10.1007/978-3-319-28203-9_19Suche in Google Scholar
[49] Mineev M. P., Pavlov A. I., âAn equation in permutationsâ, Proc. Steklov Inst. Math., 142 (1979), 195â208.Suche in Google Scholar
[50] Mutafchiev L. R., âRandom mappings with restrictions on the corresponding graphsâ, Serdica, 4:2-3 (1978), 105â110.Suche in Google Scholar
[51] Nicolas J.-L., âDistribution statistique de lâordre dâun Ă©lĂ©ment du groupe symĂ©triqueâ, Acta Math. Hungar., 45 (1985), 69â84.10.1007/BF01955024Suche in Google Scholar
[52] Pavlov A. I., âOn the limit distribution of the number of cycles and the logarithm of the order of a class of permutationsâ, Math. USSR-Sb., 42:4 (1982), 539â567.10.1070/SM1982v042n04ABEH002401Suche in Google Scholar
[53] Pavlov A. I., âOn some classes of permutations with number-theoretic restrictions on the lengths of cyclesâ, Math. USSR-Sb., 57:1 (1987), 263â275.10.1070/SM1987v057n01ABEH003068Suche in Google Scholar
[54] Pavlov A. I., âOn the number of permutations with cycle lengths in a given setâ, Discrete Math. Appl., 2:4 (1992), 445â459.10.1515/dma.1992.2.4.445Suche in Google Scholar
[55] Pavlov A. I., âOn the Erdös-Turan theorem on the logarithm of the order of a random permutationâ, Doklady Mathematics, 54:2 (1996), 688â691.Suche in Google Scholar
[56] Pavlov A. I., âOn two classes of permutations with number-theoretic constraints on cycle lengthsâ, Math. Notes, 62:6 (1997), 739â746.10.1007/BF02355462Suche in Google Scholar
[57] Pavlov Yu L., Random Forests, VSP, 2000, 122 pp.10.1515/9783110941975Suche in Google Scholar
[58] Pavlov Yu L., âLimit theorems for the sizes of trees of an unlabeled graph of a random mappingâ, Discrete Math. Appl., 14:4 (2004), 329â342.10.1515/1569392041938767Suche in Google Scholar
[59] Pavlov Yu L., Myullyari T. B., âLimit distributions of the number of vertices of given multiplicity in the forest of a random mapping with a known number of cyclesâ, Discrete Math. Appl., 22:2 (2012), 225â234.10.1515/dma-2012-015Suche in Google Scholar
[60] Postnikov A. G., Introduction to Analytic Number Theory, Am. Math. Soc., 1988, 320 pp.10.1090/mmono/068Suche in Google Scholar
[61] Proskurin G. V., âLimit distributions of the number of cyclic points of a stable random mappingâ, Discrete Math. Appl., 4:3 (1994), 259â271.10.1515/dma.1994.4.3.259Suche in Google Scholar
[62] Sachkov V. N., âMappings of a finite set with constraints on contours and heightâ, Theory Probab. Appl., 17:4 (1973), 640â656.10.1137/1117077Suche in Google Scholar
[63] Sachkov V. N., âRandom mappings of bounded heightâ, Theory Probab. Appl., 18:1 (1973), 120â130.10.1137/1118009Suche in Google Scholar
[64] Sachkov V. N., Combinatorial methods in discrete mathematics, Cambridge Univ. Press, 1996, 306 pp.10.1017/CBO9780511666186Suche in Google Scholar
[65] Sachkov V. N., Probabilistic methods in combinatorial analysis, Cambridge Univ. Press, 1997, 246 pp.10.1017/CBO9780511666193Suche in Google Scholar
[66] Sachkov V. N., Introduction to combinatorial methods of discrete mathematics, MCNMO, Moscow, 2004 (in Russian), 424 pp.Suche in Google Scholar
[67] Sevastyanov B. A., âConvergence in distribution of random mappings of finite sets to branching processesâ, Discrete Math. Appl., 15:2 (2005), 105â108.10.1515/1569392053971460Suche in Google Scholar
[68] Seneta E., Regularly Varying Functions, Springer, 1976, 116 pp.10.1007/BFb0079658Suche in Google Scholar
[69] Timashov A. N., âRandom mappings of finite sets with a known number of componentsâ, Theory Probab. Appl., 48:4 (2004), 741â751.10.1137/S0040585X97980798Suche in Google Scholar
[70] Timashov A. N., âLimit theorems in schemes for allocating particles to different cells with restrictions on the filling of cellsâ, Theory Probab. Appl., 49:4 (2005), 659â670.10.1137/S0040585X97981329Suche in Google Scholar
[71] Timashov A. N., Random allocation scheme in the problems of the probabilistic combinatorics, Publishing house âAcademyâ, Moscow, 2011 (in Russian), 268 pp.Suche in Google Scholar
[72] Timashov A. N., Large deviations in the probabilistic combinatorics, Publishing house âAcademyâ, Moscow, 2011 (in Russian), 248 pp.Suche in Google Scholar
[73] Timashov A. N., Asymptotic Expansions in Probabilistic Combinatorics, TVP, Moscow, 2010 (in Russian), 312 pp.Suche in Google Scholar
[74] Timashov A. N., Additive problems with restrictions on the values of the summands, Publishing house âAcademyâ, Moscow, 2015 (in Russian), 184 pp.Suche in Google Scholar
[75] Timashov A. N., âRandom permutations with the prime cycle lengthsâ, Teor. Veroyatn. Primen., 61:2 (2016), 365â377 (in Russian).10.1137/S0040585X97T988162Suche in Google Scholar
[76] Cheplyukova I. A., âA case of the limit distribution of the number of cyclic vertices in a random mappingâ, Discrete Math. Appl., 14:4 (2004), 343â352.10.1515/1569392041938785Suche in Google Scholar
[77] Yakymiv A. L., Probabilistic Applications of Tauberian Theorems, VSP, 2005, 225 pp.10.1515/9783110195293.225Suche in Google Scholar
[78] Yakymiv A. L., âA limit theorem for the logarithm of the order of a random A-permutationâ, Discrete Math. Appl., 20:3 (2010), 247â275.10.1515/dma.2010.015Suche in Google Scholar
[79] Yakymiv A. L., âOn the number of cyclic points of a random ?-mappingâ, Discrete Math. Appl., 23:5-6 (2013), 503â515.10.1515/dma-2013-0035Suche in Google Scholar
[80] Yakymiv A. L., âDistribution of the order in some classes of random mappingsâ XVII Int. Summer Conf. Probab. Stat. (ISCPS- 2016) (Pomorie, Bulgaria, 25 June â 1 July 2016), 2016, 42â50.Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Functional limit theorem for a stopped random walk attaining a high level
- Asymptotics of conditional probabilities of succesful allocation of random number of particles into cells
- Lower bound for the complexity of five-valued polarized polynomials
- The minimum number of negations in circuits for systems of multi-valued functions
- Bounded prefix concatenation operation and finite bases with respect to the superposition
- On the number of maximal independent sets in complete q-ary trees
- Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions
- Limit theorems for the logarithm of the order of a random A-mapping
Artikel in diesem Heft
- Frontmatter
- Functional limit theorem for a stopped random walk attaining a high level
- Asymptotics of conditional probabilities of succesful allocation of random number of particles into cells
- Lower bound for the complexity of five-valued polarized polynomials
- The minimum number of negations in circuits for systems of multi-valued functions
- Bounded prefix concatenation operation and finite bases with respect to the superposition
- On the number of maximal independent sets in complete q-ary trees
- Lower estimate for the cardinality of the domain of universal functions for the class of linear Boolean functions
- Limit theorems for the logarithm of the order of a random A-mapping