Startseite Limit theorems for the logarithm of the order of a random A-mapping
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Limit theorems for the logarithm of the order of a random A-mapping

  • Arsen L. Yakymiv EMAIL logo
Veröffentlicht/Copyright: 11. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝔖n be a semigroup of mappings of a set X with n elements into itself, A be some fixed subset of the set N of natural numbers, and Vn(A) be a set of mappings from 𝔖n, with lengths of cycles belonging to A. The mappings from Vn(A) are called A-mappings. We suppose that the set A has an asymptotic density ϱ > 0, and that |k : k ≀ n, k ∈ A, m − k ∈ A|/n → ϱ2 as n → ∞ uniformly over m ∈ [n, Cn] for each constant C > 1. A number M(α) of different elements in a set {α, α2, α3, 
} is called an order of mapping α ∈ 𝔖n. Consider a random mapping σ = σn(A) having uniform distribution on Vn(A). In the present paper it is shown that random variable ln M(σn(A)) is asymptotically normal with mean l(n)=∑k∈A(n)ln⁥(k)/k and variance ϱln3(n)/24, where A(t) = {k : k ∈ A, k ≀ t}, t > 0. For the case A = N this result was proved by B. Harris in 1973.


Originally published in Diskretnaya Matematika (2017) 29, №1, 136–155 (in Russian).


Award Identifier / Grant number: 14-01-00318

Funding statement: This study was supported by the Russian Foundation for Basic Research, grant 14-01-00318.

References

[1] Arratia R., Barbour A. D., TavarĂ© S., “Logarithmic combinatorial structures: a probabilistic approach”, Comb. Probab. Comput., 13:6 (2004), 916–917.10.4171/000Suche in Google Scholar

[2] Arratia R., TavarĂ© S., “Limit theorems for combinatorial structures via discrete process approximations”, Random Struct. Algor., 3:3 (1992), 321–345.10.1002/rsa.3240030310Suche in Google Scholar

[3] Barbour A. D., TavarĂ© S., “A rate for the Erdos-TurĂĄn law”, Comb. Probab. Comput., 3:2 (1994), 167–176.10.1017/S0963548300001097Suche in Google Scholar

[4] Bender E. A., “Asymptotic methods in enumeration”, SIAM Rev., 16:4 (1974), 485—515.10.1137/1016082Suche in Google Scholar

[5] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp.Suche in Google Scholar

[6] Bogdanas K., Manstavicius E., “Stochastic processes on weakly logarithmic assemblies”, Analytic and Probabilistic Methods in Number Theory. Kubilius Memorial Volume, eds. A. Laurincikas et al, TEV, Vilnius, 2012, 69–80.Suche in Google Scholar

[7] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “Asymptotic normality of some variables connected with the cyclic structure of random permutations”, Math. USSR-Sb., 28:1 (1976), 107–117.10.1070/SM1976v028n01ABEH001642Suche in Google Scholar

[8] Volynets L. M., “An example of nonstandard asymptotic behaviour of the number of permutations with constraints on the cycle lengths”, Sluchainye processy i ih primen., Mezvuz. sborn. MIEM, Moscow, 1989, 85–90 (in Russian).Suche in Google Scholar

[9] Gnedin A., Iksanov A., Marynych A., “A generalization of the Erdos–Turán Law for the Order of Random Permutation”, Comb. Probab. Comput., 21:5 (2012), 715—733.10.1017/S0963548312000247Suche in Google Scholar

[10] Grusho A. A., “Properties of random permutations with constraints on the maximum cycle length”, Probab. Meth. Discrete Math., Proc. Third Int. Petrozavodsk Conf., VSP/TVP, Utrecht/Moscow, 1993, 459–469.Suche in Google Scholar

[11] DĂ©nes J., “On transformations, transformation-semigroups and graphs”, Theory of Graphs, Proc. Colloq. (Tihany, 1966), Academic Press, New York, 1968, 65–75.Suche in Google Scholar

[12] DĂ©nes J., “Connections between transformation semigroups and graphs”, Theory of Graphs, Internat. Sympos. (Rome, 1966), Gordon and Breach, New York, 1967, 93–101.Suche in Google Scholar

[13] DĂ©nes J., “Some combinatorial properties of transformations and their connections with the theory of graphs”, J. Comb. Theory, 9:2 (1970), 108–116.10.1016/S0021-9800(70)80017-5Suche in Google Scholar

[14] Erdos P., Turán P., “On some problems of a statistical group-theory. I”, Z. Wahrscheinlichkeitstheorie verw. Geb., 4 (1965), 175–186.10.1007/BF00536750Suche in Google Scholar

[15] Erdos P., Turán P., “On some problems of a statistical group-theory. II”, Acta Math. Acad. Sci. Hungar., 18:1-2 (1967), 151–163.10.1007/BF02020968Suche in Google Scholar

[16] Erdos P., Turán P., “On some problems of a statistical group-theory. III”, Acta Math. Acad. Sci. Hungar., 18:3-4 (1967), 309–320.10.1007/BF02280290Suche in Google Scholar

[17] Erdos P., Turán P., “On some problems of a statistical group-theory. IV”, Acta Math. Acad. Sci. Hungar., 19:3-4 (1968), 413–435.10.1007/BF01894517Suche in Google Scholar

[18] Ewens W. J., “The sampling theory of selectively neutral alleles”, Theor Popul Biol., 3:1 (1972), 87–112.10.1016/0040-5809(72)90035-4Suche in Google Scholar

[19] Hansen J. C., Jaworski J., “Local properties of random mappings with exchangeable in-degrees”, Adv. Appl. Probab., 40:1 (2008), 183–205.10.1017/S0001867800002433Suche in Google Scholar

[20] Hansen J. C., Jaworski J., “Random mappings with exchangeable in-degrees”, Random Struct. Algor., 33:1 (2008), 105-–126.10.1002/rsa.20187Suche in Google Scholar

[21] Hansen J. C., Jaworski J., “A random mapping with preferential attachment”, Random Struct. Algor., 34:1 (2009), 87—111.10.1002/rsa.20251Suche in Google Scholar

[22] Hansen J. C., Jaworski J., “Random mappings with a given number of cyclical points”, Ars Comb., 94 (2010), 341–359.Suche in Google Scholar

[23] Hansen J. C., Jaworski J., “Predecessors and successors in random mappings with exchangeable in-degrees”, J. Appl. Probab., 50:3 (2013), 721–740.10.1017/S0021900200009803Suche in Google Scholar

[24] Hansen J. C., Jaworski J., “Random mappings with Ewens cycle structure”, Ars Comb., 112 (2013), 307–322.Suche in Google Scholar

[25] Hansen J. C., Jaworski J., “Structural transition in random mappings”, Electron. J. Comb., 21:1 (2014), 1–18.10.37236/3572Suche in Google Scholar

[26] Zacharovas V., “The convergence rate to the normal law of a certain variable defined on random polynomials”, Lith. Math. J., 42:1 (2002), 88–107.10.1023/A:1015077919456Suche in Google Scholar

[27] Zacharovas V., “Distribution of the logarithm of the order of a random permutation”, Lith. Math. J., 44:3 (2004), 296–327.10.1023/B:LIMA.0000046878.72618.bbSuche in Google Scholar

[28] Zubkov A. M., “Calculation of distributions of characteristics of numbers components and cyclic points of random mappings”, Mat. Vopr. Kriptogr., 1:2 (2010), 5–18 (in Russian).10.4213/mvk7Suche in Google Scholar

[29] Harris B., “The asymptotic distribution of the order of elements in symmetric semigroups”, J. Comb. Theory (A), 15:1 (1973), 66–74.10.1016/0097-3165(73)90036-8Suche in Google Scholar

[30] Ivchenko G. I., Medvedev Yu. I., “On random permutations” Tr. Diskr. Mat., 5, M.: Phizmatlit, 2002, 73–92 (in Russian).Suche in Google Scholar

[31] Ivchenko G. I., Medvedev Yu. I., “Random combinatorial objects”, Doklady Mathematics, 69:3 (2004), 344–347.Suche in Google Scholar

[32] Ivchenko G. I., Medvedev Yu. I., “Random permutations: the general parametric model” Discrete Math. Appl., 16, 2006, 471–478.10.1515/156939206779238391Suche in Google Scholar

[33] Ivchenko G. I., Soboleva M. V., “Some nonequiprobable models of random permutations”, Discrete Math. Appl., 21:4 (2011), 397–406.10.1515/dma.2011.025Suche in Google Scholar

[34] Kalugin I. B., “A class of random mappings”, Proc. Steklov Inst. Math., 177:4 (1988), 79–110.Suche in Google Scholar

[35] Kolchin A. V., “Equations in unknown permutations”, Discrete Math. Appl., 4:1 (1994), 59–71.10.1515/dma.1994.4.1.59Suche in Google Scholar

[36] Kolchin V. F., Random mappings, Optimization Software, 1986, 206 pp.Suche in Google Scholar

[37] Kolchin V. F., “The number of permutations with restrictions on the lengths of cycles.”, Discrete Math. Appl., 1:2 (1991), 179– 193.10.1515/dma.1991.1.2.179Suche in Google Scholar

[38] Kolchin V. F., “The number of permutations with cycle lengths from a fixed set”, Random graphs, vol. 2, Fourth Int. Seminar on Random Graphs and Probab. Meth. in Comb. (PoznaƄ, Poland, August 7–11, 1989), Wiley, New York, 1992, 139–149.Suche in Google Scholar

[39] Kolchin V. F., Random Graphs, Cambridge Univ. Press, Cambridge, 1999, 256 pp.10.1017/CBO9780511721342Suche in Google Scholar

[40] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig B.G. Teubner, Leipzig-Berlin, 1909, 596 pp.Suche in Google Scholar

[41] DeLaurentis J. M., Pittel B. G., “Random permutations and Brownian motion”, Pacific J. Math., 119:2 (1985), 287–301.10.2140/pjm.1985.119.287Suche in Google Scholar

[42] Manstavicius E., “On random permutations without cycles of some lenghts”, Period. Math. Hungar., 42:1-2 (2001), 37–44.10.1023/A:1015288321931Suche in Google Scholar

[43] Manstavicius E., “A functional limit theorem on powers of random permutations”, Lith. Math. J., 49:3 (2009), 145–157.10.1007/s10986-009-9056-6Suche in Google Scholar

[44] Manstavicius E., “Total variation approximation for random assemblies and a functional limit theorem”, Monatsh. Math., 161:3 (2010), 313–334.10.1007/s00605-009-0151-xSuche in Google Scholar

[45] Manstavicius E., “On total variation approximations for random assemblies”, DMTCS, 23rd Int. Meet. Probab. Comb. and Asympt. Methods for the Anal. Alg. (AofA’12) (Montreal, Canada, June 18-22, 2012), eds. Broutin N., Devroye L., 2012, 97–108.Suche in Google Scholar

[46] Manstavicius E., Petuchovas R., “Permutations without long or short cycles”, Electr. Notes Discr. Math., 49 (2015), 153–158.10.1016/j.endm.2015.06.023Suche in Google Scholar

[47] Manstavicius E., Petuchovas R., “Local probabilities for random permutations without long cycles”, Electr. J. Comb., 23:1 (2016), #P1.58, 25 pp.10.37236/4758Suche in Google Scholar

[48] Manstavicius E., “A Turán-Kubilius inequality on mappings of a finite set”, From Arithmetic to Zeta-Functions, Number Theoryin Memory of Wolfgang Schwarz, eds. J. Sander et al, Springer, 2016, 295–307.10.1007/978-3-319-28203-9_19Suche in Google Scholar

[49] Mineev M. P., Pavlov A. I., “An equation in permutations”, Proc. Steklov Inst. Math., 142 (1979), 195–208.Suche in Google Scholar

[50] Mutafchiev L. R., “Random mappings with restrictions on the corresponding graphs”, Serdica, 4:2-3 (1978), 105–110.Suche in Google Scholar

[51] Nicolas J.-L., “Distribution statistique de l’ordre d’un Ă©lĂ©ment du groupe symĂ©trique”, Acta Math. Hungar., 45 (1985), 69–84.10.1007/BF01955024Suche in Google Scholar

[52] Pavlov A. I., “On the limit distribution of the number of cycles and the logarithm of the order of a class of permutations”, Math. USSR-Sb., 42:4 (1982), 539–567.10.1070/SM1982v042n04ABEH002401Suche in Google Scholar

[53] Pavlov A. I., “On some classes of permutations with number-theoretic restrictions on the lengths of cycles”, Math. USSR-Sb., 57:1 (1987), 263–275.10.1070/SM1987v057n01ABEH003068Suche in Google Scholar

[54] Pavlov A. I., “On the number of permutations with cycle lengths in a given set”, Discrete Math. Appl., 2:4 (1992), 445–459.10.1515/dma.1992.2.4.445Suche in Google Scholar

[55] Pavlov A. I., “On the Erdös-Turan theorem on the logarithm of the order of a random permutation”, Doklady Mathematics, 54:2 (1996), 688–691.Suche in Google Scholar

[56] Pavlov A. I., “On two classes of permutations with number-theoretic constraints on cycle lengths”, Math. Notes, 62:6 (1997), 739–746.10.1007/BF02355462Suche in Google Scholar

[57] Pavlov Yu L., Random Forests, VSP, 2000, 122 pp.10.1515/9783110941975Suche in Google Scholar

[58] Pavlov Yu L., “Limit theorems for the sizes of trees of an unlabeled graph of a random mapping”, Discrete Math. Appl., 14:4 (2004), 329–342.10.1515/1569392041938767Suche in Google Scholar

[59] Pavlov Yu L., Myullyari T. B., “Limit distributions of the number of vertices of given multiplicity in the forest of a random mapping with a known number of cycles”, Discrete Math. Appl., 22:2 (2012), 225–234.10.1515/dma-2012-015Suche in Google Scholar

[60] Postnikov A. G., Introduction to Analytic Number Theory, Am. Math. Soc., 1988, 320 pp.10.1090/mmono/068Suche in Google Scholar

[61] Proskurin G. V., “Limit distributions of the number of cyclic points of a stable random mapping”, Discrete Math. Appl., 4:3 (1994), 259–271.10.1515/dma.1994.4.3.259Suche in Google Scholar

[62] Sachkov V. N., “Mappings of a finite set with constraints on contours and height”, Theory Probab. Appl., 17:4 (1973), 640–656.10.1137/1117077Suche in Google Scholar

[63] Sachkov V. N., “Random mappings of bounded height”, Theory Probab. Appl., 18:1 (1973), 120–130.10.1137/1118009Suche in Google Scholar

[64] Sachkov V. N., Combinatorial methods in discrete mathematics, Cambridge Univ. Press, 1996, 306 pp.10.1017/CBO9780511666186Suche in Google Scholar

[65] Sachkov V. N., Probabilistic methods in combinatorial analysis, Cambridge Univ. Press, 1997, 246 pp.10.1017/CBO9780511666193Suche in Google Scholar

[66] Sachkov V. N., Introduction to combinatorial methods of discrete mathematics, MCNMO, Moscow, 2004 (in Russian), 424 pp.Suche in Google Scholar

[67] Sevastyanov B. A., “Convergence in distribution of random mappings of finite sets to branching processes”, Discrete Math. Appl., 15:2 (2005), 105–108.10.1515/1569392053971460Suche in Google Scholar

[68] Seneta E., Regularly Varying Functions, Springer, 1976, 116 pp.10.1007/BFb0079658Suche in Google Scholar

[69] Timashov A. N., “Random mappings of finite sets with a known number of components”, Theory Probab. Appl., 48:4 (2004), 741–751.10.1137/S0040585X97980798Suche in Google Scholar

[70] Timashov A. N., “Limit theorems in schemes for allocating particles to different cells with restrictions on the filling of cells”, Theory Probab. Appl., 49:4 (2005), 659–670.10.1137/S0040585X97981329Suche in Google Scholar

[71] Timashov A. N., Random allocation scheme in the problems of the probabilistic combinatorics, Publishing house “Academy”, Moscow, 2011 (in Russian), 268 pp.Suche in Google Scholar

[72] Timashov A. N., Large deviations in the probabilistic combinatorics, Publishing house “Academy”, Moscow, 2011 (in Russian), 248 pp.Suche in Google Scholar

[73] Timashov A. N., Asymptotic Expansions in Probabilistic Combinatorics, TVP, Moscow, 2010 (in Russian), 312 pp.Suche in Google Scholar

[74] Timashov A. N., Additive problems with restrictions on the values of the summands, Publishing house “Academy”, Moscow, 2015 (in Russian), 184 pp.Suche in Google Scholar

[75] Timashov A. N., “Random permutations with the prime cycle lengths”, Teor. Veroyatn. Primen., 61:2 (2016), 365–377 (in Russian).10.1137/S0040585X97T988162Suche in Google Scholar

[76] Cheplyukova I. A., “A case of the limit distribution of the number of cyclic vertices in a random mapping”, Discrete Math. Appl., 14:4 (2004), 343–352.10.1515/1569392041938785Suche in Google Scholar

[77] Yakymiv A. L., Probabilistic Applications of Tauberian Theorems, VSP, 2005, 225 pp.10.1515/9783110195293.225Suche in Google Scholar

[78] Yakymiv A. L., “A limit theorem for the logarithm of the order of a random A-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275.10.1515/dma.2010.015Suche in Google Scholar

[79] Yakymiv A. L., “On the number of cyclic points of a random ?-mapping”, Discrete Math. Appl., 23:5-6 (2013), 503–515.10.1515/dma-2013-0035Suche in Google Scholar

[80] Yakymiv A. L., “Distribution of the order in some classes of random mappings” XVII Int. Summer Conf. Probab. Stat. (ISCPS- 2016) (Pomorie, Bulgaria, 25 June — 1 July 2016), 2016, 42–50.Suche in Google Scholar

Received: 2016-7-28
Revised: 2016-11-21
Published Online: 2017-10-11
Published in Print: 2017-10-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2017-0034/pdf
Button zum nach oben scrollen