Startseite Completeness problem for the class of linear automata functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Completeness problem for the class of linear automata functions

  • Anatoliy A. Chasovskikh EMAIL logo
Veröffentlicht/Copyright: 26. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the classes of linear automata functions over finite fields with composition (superposition and feedback) operation and describe an algorithm that decides whether a finite set of functions from such class is complete. Thus we generalize the result that was known for the case of linear automata functions over prime finite fields.


Originally published in Diskretnaya Matematika (2015)27, No2, 134–151 (in Russian).


References

[1] Waerden B.L. van der, Algebra, transl. from German, Nauka, Moscow, 1976 (in Russian), 648 pp.Suche in Google Scholar

[2] Gill A., Linear sequential machines, transl. from English, Nauka, Moscow, 1974 (in Russian), 288 pp.Suche in Google Scholar

[3] Zariski O.,, Samuel P., Commutative Algebra, transl. from English, IL, Moscow, 1963 (in Russian), 373 pp.10.1007/978-3-662-29244-0Suche in Google Scholar

[4] Kudryavtsev V.B., Aleshin S.V., Podkolzin A.S., Introduction to automata theory, Nauka, Moscow, 1985 (in Russian), 320 pp.Suche in Google Scholar

[5] Lang S., Algebra, 3”, Addison-Wesley, 1993.Suche in Google Scholar

[6] Lidl R., Niederreiter H., “Finite fields”, Encyclopedia of Mathematics and its Applications,20, Addison-Wesley, 1987, 755 pp.Suche in Google Scholar

[7] Chasovskikh A.A., “Conditions of completeness linearly-p-automatic functions”, Int. Sys.,18 :3 (2014), 203–252 (in Russian). 104 [bar.two] Anatoliy A. Chasovskikh, Completeness problem for the class of linear automata functionsSuche in Google Scholar

[8] Lau D., Function Algebras on Finite Sets. A Basic Course on Many-Valued Logic and Clone Theory, Springer, Rostok, 2006, 668 pp.Suche in Google Scholar

[9] Szendrei Á., “On closed classes of quasilinear functions”, Chechoslovak Math. J.,30 :3 (1980), 498–509.10.21136/CMJ.1980.101699Suche in Google Scholar

Received: 2015-3-17
Published Online: 2016-4-26
Published in Print: 2016-4-1

2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0007/html?lang=de
Button zum nach oben scrollen