Startseite Functional limit theorems for the decomposable branching process with two types of particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional limit theorems for the decomposable branching process with two types of particles

  • Valeriy I Afanasiev EMAIL logo
Veröffentlicht/Copyright: 26. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A decomposable Galton - Watson process with two types of particles is considered. Particles of the first type produce equal random numbers of particles of both types, particles of the second type produce particles of the second type only. Under the condition that the total number of the first type particles is equal to N the functional limit theorems are proved for the numbers of particles of both types existing at times of the orders of

N, of N and of the intermediate orders.


Originally published in Diskretnaya Matematika (2015) 27, N2, 22-44 (in Russian).


Award Identifier / Grant number: 14-50-00005

Funding statement: This work was supported by the Russian Science Foundation under grant no. 14-50-00005

References

[1] Vatutin V.A., D’yakonova E. E., “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math.290 (2015), 103-124.10.1134/S0081543815060103Suche in Google Scholar

[2] Kolchin V.F., “Random mappings”, Trans. Ser. in Math. and Eng., Optimization Software Inc. Publications Division, New York, 1986, 207 pp.Suche in Google Scholar

[3] Drmota M., “On the profile of random trees”, Random Struct. Alg., 10 :4 (1997), 421-451.10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-WSuche in Google Scholar

[4] Lamperti J., “Limiting distributions for branching processes”, Univ. California Press., Proc. Fifth Berkeley Sympos. Math. Statist. and Probab., 1967, 225-241.10.1525/9780520325340-018Suche in Google Scholar

[5] Lindvall T., “Convergence of critical Galton-Watson branching processes”, J. Appl. Probab., 9 :2 (1972), 445-450.10.2307/3212815Suche in Google Scholar

[6] Billingsley P., Convergence of probability measures, Wiley, 1968, 262 pp.Suche in Google Scholar

Received: 2015-3-17
Published Online: 2016-4-26
Published in Print: 2016-4-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0006/html
Button zum nach oben scrollen