Startseite Factorially solvable rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Factorially solvable rings

  • V. P. Elizarov und V. L. Kurakin
Veröffentlicht/Copyright: 7. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A system of linear equations over a ring R is called factorially solvable if for any proper ideal I of R its factorsystem is solvable over the ring R/I. A ring is called factorially solvable if any factorially solvable system over this ring is solvable. In this article it is shown that any decomposable ring is factorially solvable, a commutative principal ideal domain is factorially solvable if and only if it is subdirectly indecomposable, and that a finite commutative ring is factorially solvable if and only if it is not local.

Published Online: 2014-02-07
Published in Print: 2013-06

© 2014 by Walter de Gruyter GmbH & Co.

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2013-025/html?lang=de
Button zum nach oben scrollen