Startseite Mathematik Splitting of almost ordinary abelian surfaces in families and the 𝑆-integrality conjectures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Splitting of almost ordinary abelian surfaces in families and the 𝑆-integrality conjectures

  • Ruofan Jiang EMAIL logo
Veröffentlicht/Copyright: 6. Mai 2025

Abstract

Let 𝐮 be a non-isotrivial almost ordinary abelian surface with possibly bad reductions over a global function field of odd characteristic 𝑝. Suppose Δ is an infinite set of positive integers such that ( m p ) = 1 for all m ∈ Δ . If 𝐮 does not admit any global real multiplication, we prove the existence of infinitely many places modulo which the reduction of 𝐮 has endomorphism ring containing Z ⁱ [ x ] / ( x 2 − m ) for some m ∈ Δ . This implies that there are infinitely many places modulo which 𝐮 is not simple, generalizing the main result of [D. Maulik, A. N. Shankar and Y. Tang, Reductions of abelian surfaces over global function fields, Compos. Math. 158 (2022), 4, 893–950] to the non-ordinary case. As another application, we also generalize the 𝑆-integrality theorem for elliptic curves over number fields, as proved in [M. Baker, S.-I. Ih and R. Rumely, A finiteness property of torsion points, Algebra Number Theory 2 (2008), 2, 217–248], to the setting of abelian surfaces over global function fields.

Award Identifier / Grant number: DMS-2100436

Funding statement: The author is partially supported by the NSF grant DMS-2100436.

Acknowledgements

The author thanks Ananth Shankar for suggesting this problem and his help, thanks Asvin G, Qiao He, Jiaqi Hou, and Salim Tayou for valuable discussions, and thanks Jordan Ellenberg for pointing out some imprecision in the introduction. The author also thanks Keerthi Madapusi Pera for answering a question on toroidal compactifications and Martin Olsson for answering a question on log geometry.

References

[1] F. Andreatta, E. Z. Goren, B. Howard and K. Madapusi Pera, Faltings heights of abelian varieties with complex multiplication, Ann. of Math. (2) 187 (2018), no. 2, 391–531. 10.4007/annals.2018.187.2.3Suche in Google Scholar

[2] M. Baker, S.-I. Ih and R. Rumely, A finiteness property of torsion points, Algebra Number Theory 2 (2008), no. 2, 217–248. 10.2140/ant.2008.2.217Suche in Google Scholar

[3] G. A. Boxer, Torsion in the coherent cohomology of Shimura varieties and Galois representations, Ph.D. Thesis, Harvard University, 2015. Suche in Google Scholar

[4] J. H. Bruinier, Borcherds products with prescribed divisor, Bull. Lond. Math. Soc. 49 (2017), no. 6, 979–987. 10.1112/blms.12090Suche in Google Scholar

[5] J. H. Bruinier and M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. 10.1007/s229-001-8027-1Suche in Google Scholar

[6] J. H. Bruinier and S. Zemel, Special cycles on toroidal compactifications of orthogonal Shimura varieties, Math. Ann. 384 (2022), no. 1–2, 309–371. 10.1007/s00208-021-02271-xSuche in Google Scholar

[7] C. Chai, Families of ordinary Abelian varieties: Canonical coordinates, 𝑝-adic monodromy, Tate-linear subvarieties and Hecke orbits, (2003), https://www.math.upenn.edu/~chai/papers_pdf/fam_ord_av.pdf. Suche in Google Scholar

[8] N. Chavdarov, The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy, Duke Math. J. 87 (1997), no. 1, 151–180. 10.1215/S0012-7094-97-08707-XSuche in Google Scholar

[9] A. J. de Jong, Crystalline DieudonnĂ© module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 5–96. 10.1007/BF02698637Suche in Google Scholar

[10] A. J. de Jong, Homomorphisms of Barsotti–Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), no. 2, 301–333. 10.1007/s002220050266Suche in Google Scholar

[11] A. J. de Jong and W. Messing, Crystalline DieudonnĂ© theory over excellent schemes, Bull. Soc. Math. France 127 (1999), no. 2, 333–348. 10.24033/bsmf.2351Suche in Google Scholar

[12] G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), no. 1, 117–144. 10.1090/S0894-0347-99-00273-8Suche in Google Scholar

[13] G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3) 22, Springer, Berlin 1990. 10.1007/978-3-662-02632-8Suche in Google Scholar

[14] A. Grothendieck, ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Étude locale des schĂ©mas et des morphismes de schĂ©mas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965),1–2231. 10.1007/BF02684322Suche in Google Scholar

[15] J. Hanke, Local densities and explicit bounds for representability by a quadratric form, Duke Math. J. 124 (2004), no. 2, 351–388. 10.1215/S0012-7094-04-12424-8Suche in Google Scholar

[16] B. Howard and K. Madapusi Pera, Arithmetic of Borcherds products, AstĂ©risque 421 (2020), 187–297. 10.24033/ast.1128Suche in Google Scholar

[17] B. Howard and G. Pappas, Rapoport–Zink spaces for spinor groups, Compos. Math. 153 (2017), no. 5, 1050–1118. 10.1112/S0010437X17007011Suche in Google Scholar

[18] T. Kajiwara, K. Kato and C. Nakayama, Logarithmic abelian varieties, Nagoya Math. J. 189 (2008), 63–138. 10.1017/S002776300000951XSuche in Google Scholar

[19] K. Kato, Logarithmic structures of Fontaine–Illusie, Algebraic analysis, geometry, and number theory (Baltimore 1988), Johns Hopkins University, Baltimore (1989), 191–224. Suche in Google Scholar

[20] K. Kato, Logarithmic Dieudonné theory, preprint (2023), https://arxiv.org/abs/2306.13943. Suche in Google Scholar

[21] M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), no. 4, 967–1012. 10.1090/S0894-0347-10-00667-3Suche in Google Scholar

[22] S. S. Kudla and M. Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series, Ann. Sci. Éc. Norm. SupĂ©r. (4) 33 (2000), no. 5, 695–756. 10.1016/S0012-9593(00)01051-XSuche in Google Scholar

[23] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, London Math. Soc. Monogr. Ser. 36, Princeton University, Princeton 2013. 10.23943/princeton/9780691156545.001.0001Suche in Google Scholar

[24] K. Madapusi Sampath, Toroidal compactifications of integral models of Shimura varieties of Hodge type, Ph.D. Thesis, The University of Chicago, 2011, Suche in Google Scholar

[25] K. Madapusi Pera, Integral canonical models for spin Shimura varieties, Compos. Math. 152 (2016), no. 4, 769–824. 10.1112/S0010437X1500740XSuche in Google Scholar

[26] K. Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge type, Ann. Sci. Éc. Norm. SupĂ©r. (4) 52 (2019), no. 2, 393–514. 10.24033/asens.2391Suche in Google Scholar

[27] D. Maulik, A. N. Shankar and Y. Tang, Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture, Invent. Math. 228 (2022), no. 3, 1075–1143. 10.1007/s00222-022-01097-xSuche in Google Scholar

[28] D. Maulik, A. N. Shankar and Y. Tang, Reductions of abelian surfaces over global function fields, Compos. Math. 158 (2022), no. 4, 893–950. 10.1112/S0010437X22007473Suche in Google Scholar

[29] B. Moonen, Linearity properties of Shimura varieties. I, J. Algebraic Geom. 7 (1998), no. 3, 539–567. Suche in Google Scholar

[30] B. Moonen, Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geometry (Durham 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge University, Cambridge (1998), 267–350. 10.1017/CBO9780511662010.008Suche in Google Scholar

[31] V. K. Murty and V. M. Patankar, Splitting of abelian varieties, Int. Math. Res. Not. IMRN 2008 (2008), no. 12, Article ID rnn033. Suche in Google Scholar

[32] A. Ogus, Singularities of the height strata in the moduli of K ⁹ 3 surfaces, Moduli of abelian varieties (Texel Island 1999), Progr. Math. 195, BirkhĂ€user, Basel (2001), 325–343. 10.1007/978-3-0348-8303-0_12Suche in Google Scholar

[33] A. N. Shankar and Y. Tang, Exceptional splitting of reductions of abelian surfaces, Duke Math. J. 169 (2020), no. 3, 397–434. 10.1215/00127094-2019-0046Suche in Google Scholar

[34] A. Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), no. 4, 509–656. Suche in Google Scholar

[35] S. Tayou, Picard rank jumps for K3 surfaces with bad reduction, Algebra Number Theory 19 (2025), 10.2140/ant.2025.19.77. 10.2140/ant.2025.19.77Suche in Google Scholar

[36] M. WĂŒrthen and H. Zhao, Log 𝑝-divisible groups associated with log 1-motives, Canad. J. Math. 76 (2024), no. 3, 946–983. 10.4153/S0008414X23000287Suche in Google Scholar

[37] T. Zink, On the slope filtration, Duke Math. J. 109 (2001), no. 1, 79–95. 10.1215/dmj/996987491Suche in Google Scholar

[38] D. Zywina, The splitting of reductions of an abelian variety, Int. Math. Res. Not. IMRN 2014 (2014), no. 18, 5042–5083. 10.1093/imrn/rnt113Suche in Google Scholar

[39] The Stacks project authors, Stacks project, https://stacks.math.columbia.edu, 2018. Suche in Google Scholar

Received: 2024-05-10
Revised: 2025-04-04
Published Online: 2025-05-06
Published in Print: 2025-08-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2025-0033/html?lang=de
Button zum nach oben scrollen