Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties
-
Alexander Gorodnik
Abstract
Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors,
Award Identifier / Grant number: 200020–212617
Award Identifier / Grant number: 200021–182089
Award Identifier / Grant number: 193481
Funding statement: A. Gorodnik and J. Li were supported by the SNF grants 200020–212617 and 200021–182089; C. Sert was supported by SNF Ambizione grant 193481.
References
[1] R. Aoun and C. Sert, Random walks on hyperbolic spaces: Concentration inequalities and probabilistic Tits alternative, Probab. Theory Related Fields 184 (2022), no. 1–2, 323–365. 10.1007/s00440-022-01116-1Suche in Google Scholar PubMed PubMed Central
[2] T. Bénard and N. de Saxcé, Random walks with bounded first moment on finite-volume spaces, Geom. Funct. Anal. 32 (2022), no. 4, 687–724. 10.1007/s00039-022-00607-6Suche in Google Scholar
[3] Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes, Ann. of Math. (2) 174 (2011), no. 2, 1111–1162. 10.4007/annals.2011.174.2.8Suche in Google Scholar
[4] Y. Benoist and J.-F. Quint, Random walks on finite volume homogeneous spaces, Invent. Math. 187 (2012), no. 1, 37–59. 10.1007/s00222-011-0328-5Suche in Google Scholar
[5] Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (II), J. Amer. Math. Soc. 26 (2013), no. 3, 659–734. 10.1090/S0894-0347-2013-00760-2Suche in Google Scholar
[6] Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (III), Ann. of Math. (2) 178 (2013), no. 3, 1017–1059. 10.4007/annals.2013.178.3.5Suche in Google Scholar
[7] Y. Benoist and J.-F. Quint, Random walks on projective spaces, Compos. Math. 150 (2014), no. 9, 1579–1606. 10.1112/S0010437X1400726XSuche in Google Scholar
[8] Y. Benoist and J.-F. Quint, Random walks on reductive groups, Ergeb. Math. Grenzgeb. (3) 62, Springer, Cham 2016. 10.1007/978-3-319-47721-3Suche in Google Scholar
[9] P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progr. Probab. Stat. 8, Birkhäuser, Boston 1985. 10.1007/978-1-4684-9172-2Suche in Google Scholar
[10] A. Eskin and E. Lindenstrauss, Random walks on locally homogeneous spaces, preprint, http://www.math.uchicago.edu/~eskin/RandomWalks/paper.pdf. Suche in Google Scholar
[11] A. Eskin and E. Lindenstrauss, Zariski dense random walks on homogeneous spaces, preprint, https://www.math.uchicago.edu/~eskin/RandomWalks/short_paper.pdf. Suche in Google Scholar
[12]
A. Eskin and M. Mirzakhani,
Invariant and stationary measures for the
[13] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. 10.2307/1970220Suche in Google Scholar
[14] H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428. 10.1090/S0002-9947-1963-0163345-0Suche in Google Scholar
[15] H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces, Proc. Sympos. Pure Math. 26, American Mathematical Society, Providence (1973), 193–229. 10.1090/pspum/026/0352328Suche in Google Scholar
[16] I. Y. Goldsheĭd and G. A. Margulis, Lyapunov indices of a product of random matrices, Russian Math. Surveys 44 (1989), no. 5, 11–71. 10.1070/RM1989v044n05ABEH002214Suche in Google Scholar
[17] Y. Guivarc’h and E. Le Page, Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 2, 503–574. 10.1214/15-AIHP668Suche in Google Scholar
[18] Y. Guivarc’h and A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 187–242. 10.1007/BF02450281Suche in Google Scholar
[19] Y. Guivarc’h and A. Raugi, Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 2, 209–249. 10.1016/j.ansens.2007.01.003Suche in Google Scholar
[20] A. W. Knapp, Lie groups beyond an introduction, Progr. Math. 140, Birkhäuser, Boston 2002. Suche in Google Scholar
[21] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. 10.2307/2372999Suche in Google Scholar
[22] J. Li, Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple Lie groups, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 6, 1613–1686. 10.24033/asens.2525Suche in Google Scholar
[23] J. Li and T. Sahlsten, Fourier transform of self-affine measures, Adv. Math. 374 (2020), Article ID 107349. 10.1016/j.aim.2020.107349Suche in Google Scholar
[24] G. W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Natl. Acad. Sci. USA 35 (1949), 537–545. 10.1073/pnas.35.9.537Suche in Google Scholar PubMed PubMed Central
[25] G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. 10.1007/BF02392428Suche in Google Scholar
[26] C. Neil and V. Ginzburg, Representation theory and complex geometry, Birkhäuser, Boston 1997. Suche in Google Scholar
[27] R. Prohaska, C. Sert and R. Shi, Expanding measures: Random walks and rigidity on homogeneous spaces, Forum Math. Sigma 11 (2023), Paper No. e59. 10.1017/fms.2023.56Suche in Google Scholar
[28] M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. 10.2307/2944357Suche in Google Scholar
[29] M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), no. 1, 235–280. 10.1215/S0012-7094-91-06311-8Suche in Google Scholar
[30] O. Sargent and U. Shapira, Dynamics on the space of 2-lattices in 3-space, Geom. Funct. Anal. 29 (2019), no. 3, 890–948. 10.1007/s00039-019-00493-5Suche in Google Scholar
[31] V. S. Varadarajan, Geometry of quantum theory. Vol. I, Univ. Ser. Higher Math., D. Van Nostrand, Princeton 1968. 10.1007/978-1-4615-7706-5Suche in Google Scholar
[32] R. J. Zimmer, Ergodic theory and semisimple groups, Monogr. Math. 81, Birkhäuser, Basel 1984. 10.1007/978-1-4684-9488-4Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Inverse mean curvature flow and Ricci-pinched three-manifolds
- Irregular loci in the Emerton–Gee stack for GL2
- Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties
- The Lichnerowicz Laplacian on normal homogeneous spaces
- Sharp pinching theorems for complete submanifolds in the sphere
- On Vafa–Witten equations over Kähler manifolds
- Sheaf quantization from exact WKB analysis
- Reduced resonance schemes and Chen ranks
- Eisenstein degeneration of Euler systems
- Erratum to Discriminants and Artin conductors (J. reine angew. Math. 712 (2016), 107–121)
Artikel in diesem Heft
- Frontmatter
- Inverse mean curvature flow and Ricci-pinched three-manifolds
- Irregular loci in the Emerton–Gee stack for GL2
- Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties
- The Lichnerowicz Laplacian on normal homogeneous spaces
- Sharp pinching theorems for complete submanifolds in the sphere
- On Vafa–Witten equations over Kähler manifolds
- Sheaf quantization from exact WKB analysis
- Reduced resonance schemes and Chen ranks
- Eisenstein degeneration of Euler systems
- Erratum to Discriminants and Artin conductors (J. reine angew. Math. 712 (2016), 107–121)