Abstract
We give a new formula for the Lichnerowicz Laplacian on normal homogeneous spaces in terms of Casimir operators.
We derive some practical estimates and apply them to the known list of non-symmetric, compact, simply connected homogeneous spaces
Acknowledgements
The author is indebted to Prof. G. Weingart for the spark of inspiration that led to the exact formula for
References
[1] A.âL. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin 1987. 10.1007/978-3-540-74311-8Search in Google Scholar
[2] A.âM. Cohen, M. van Leeuwen and B. Lisser, LiE, a Computer algebra package for Lie group computations, version 2.2.2, (2022), http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/. Search in Google Scholar
[3] X. Dai, X. Wang and G. Wei, On the stability of Riemannian manifold with parallel spinors, Invent. Math. 161 (2005), 151â176. 10.1007/s00222-004-0424-xSearch in Google Scholar
[4] J. Gasqui and H. Goldschmidt, Radon transforms and the rigidity of the Grassmannians, Ann. of Math. Stud. 156, Princeton University, Princeton 2004. Search in Google Scholar
[5] H. Heil, A. Moroianu and U. Semmelmann, Killing and conformal Killing tensors, J. Geom. Phys. 106 (2016), 383â400. 10.1016/j.geomphys.2016.04.014Search in Google Scholar
[6] N. Koiso, Rigidity and stability of Einstein metricsâthe case of compact symmetric spaces, Osaka Math. J. 17 (1980), no. 1, 51â73. Search in Google Scholar
[7] M. KrĂ€mer, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhĂ€ngender Liegruppen, Comm. Algebra 3 (1975), no. 8, 691â737. 10.1080/00927877508822068Search in Google Scholar
[8] E.âA. Lauret and J. Lauret, The stability of standard homogeneous Einstein manifolds, Math. Z. 303 (2023), no. 1, Paper No. 16. 10.1007/s00209-022-03174-6Search in Google Scholar
[9] J. Lauret, On the stability of homogeneous Einstein manifolds, Asian J. Math. 26 (2022), no. 4, 555â584. 10.4310/AJM.2022.v26.n4.a3Search in Google Scholar
[10] J. Lauret and C. Will, On the stability of homogeneous Einstein manifolds II, J. Lond. Math. Soc. (2) 106 (2022), no. 4, 3638â3669. 10.1112/jlms.12669Search in Google Scholar
[11] A. Lichnerowicz, Propagateurs et commutateurs en relativitĂ© gĂ©nĂ©rale, Publ. Math. Inst. Hautes Ătudes Sci. 10 (1961), 5â56. 10.1007/BF02684612Search in Google Scholar
[12] O.âV. Manturov, Homogeneous, non-symmetric Riemannian spaces with an irreducible rotation group, Dokl. Akad. Nauk SSSR 141 (1961), 792â795. Search in Google Scholar
[13] O.âV. Manturov, Riemannian spaces with orthogonal and symplectic motion groups and an irreducible rotation group, Dokl. Akad. Nauk SSSR 141 (1961), 1034â1037. Search in Google Scholar
[14] O.âV. Manturov, Homogeneous Riemannian manifolds with irreducible isotropy group, Trudy Sem. Vector. Tenzor. Anal. 13 (1966), 68â145. Search in Google Scholar
[15] A. Moroianu and U. Semmelmann, The Hermitian Laplace operator on nearly KĂ€hler manifolds, Comm. Math. Phys. 294 (2010), no. 1, 251â272. 10.1007/s00220-009-0903-4Search in Google Scholar
[16] P. Schwahn, Stability of Einstein metrics on symmetric spaces of compact type, Ann. Global Anal. Geom. 61 (2022), no. 2, 333â357. 10.1007/s10455-021-09810-4Search in Google Scholar
[17]
P. Schwahn, U. Semmelmann and G. Weingart,
Stability of the nonâsymmetric space
[18]
U. Semmelmann, C. Wang and M. Wang,
Linear Instability of Sasaki Einstein and nearly parallel
[19] U. Semmelmann and G. Weingart, The standard Laplace operator, Manuscripta Math. 158 (2019), no. 1â2, 273â293. 10.1007/s00229-018-1023-2Search in Google Scholar
[20] U. Semmelmann and G. Weingart, Stability of compact symmetric spaces, J. Geom. Anal. 32 (2022), no. 4, Paper No. 137. 10.1007/s12220-021-00838-3Search in Google Scholar
[21] N.âR. Wallach, Harmonic analysis on homogeneous spaces, Pure Appl. Math. 19, Marcel Dekker, New York 1973. Search in Google Scholar
[22] C. Wang and Y.âK. Wang, Stability of Einstein metrics on fiber bundles, J. Geom. Anal. 31 (2021), no. 1, 490â515. 10.1007/s12220-019-00282-4Search in Google Scholar
[23] M.âY. Wang and W. Ziller, On normal homogeneous Einstein manifolds, Ann. Sci. Ăc. Norm. SupĂ©r. (4) 18 (1985), no. 4, 563â633. 10.24033/asens.1497Search in Google Scholar
[24] J.âA. Wolf, The goemetry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59â148. 10.1007/BF02394607Search in Google Scholar
[25] The Sage developers: SageMath, the Sage mathematics software system, version 9.2, (2020), https://www.sagemath.org. Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Inverse mean curvature flow and Ricci-pinched three-manifolds
- Irregular loci in the EmertonâGee stack for GL2
- Stationary measures for SL2(â)-actions on homogeneous bundles over flag varieties
- The Lichnerowicz Laplacian on normal homogeneous spaces
- Sharp pinching theorems for complete submanifolds in the sphere
- On VafaâWitten equations over KĂ€hler manifolds
- Sheaf quantization from exact WKB analysis
- Reduced resonance schemes and Chen ranks
- Eisenstein degeneration of Euler systems
- Erratum to Discriminants and Artin conductors (J. reine angew. Math. 712 (2016), 107â121)
Articles in the same Issue
- Frontmatter
- Inverse mean curvature flow and Ricci-pinched three-manifolds
- Irregular loci in the EmertonâGee stack for GL2
- Stationary measures for SL2(â)-actions on homogeneous bundles over flag varieties
- The Lichnerowicz Laplacian on normal homogeneous spaces
- Sharp pinching theorems for complete submanifolds in the sphere
- On VafaâWitten equations over KĂ€hler manifolds
- Sheaf quantization from exact WKB analysis
- Reduced resonance schemes and Chen ranks
- Eisenstein degeneration of Euler systems
- Erratum to Discriminants and Artin conductors (J. reine angew. Math. 712 (2016), 107â121)