Abstract
In this paper, an invariant is introduced for negative definite plumbed 3-manifolds equipped with a spin
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1839968
Award Identifier / Grant number: DMS-2105467
Funding source: Simons Foundation
Award Identifier / Grant number: 608604
Funding statement: Rostislav Akhmechet was supported by NSF RTG grant DMS-1839968, NSF grant DMS-2105467 and the Jefferson Scholars Foundation. Peter K. Johnson was supported by NSF RTG grant DMS-1839968. Vyacheslav Krushkal was supported in part by Simons Foundation fellowship 608604, and NSF grant DMS-2105467.
Acknowledgements
Peter K. Johnson thanks his advisor, Tom Mark, for his continued support and introducing him to lattice cohomology. Vyacheslav Krushkal is grateful to Sergei Gukov for discussions on the GPPV invariant.
References
[1] K. Bringmann, K. Mahlburg and A. Milas, Quantum modular forms and plumbing graphs of 3-manifolds, J. Combin. Theory Ser. A 170 (2020), Article ID 105145. 10.1016/j.jcta.2019.105145Suche in Google Scholar
[2] M. C. Cheng, S. Chun, F. Ferrari, S. Gukov and S. M. Harrison, 3d modularity, J. High Energy Phys. 2019 (2019), Article ID 10. 10.1007/JHEP10(2019)010Suche in Google Scholar
[3] I. Dai and C. Manolescu, Involutive Heegaard Floer homology and plumbed three-manifolds, J. Inst. Math. Jussieu 18 (2019), no. 6, 1115–1155. 10.1017/S1474748017000329Suche in Google Scholar
[4] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. 10.4310/jdg/1214437665Suche in Google Scholar
[5] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215–240. 10.1007/BF01218578Suche in Google Scholar
[6] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math. 20, American Mathematical Society, Providence 1999. 10.1090/gsm/020Suche in Google Scholar
[7] S. Gukov and C. Manolescu, A two-variable series for knot complements, Quantum Topol. 12 (2021), no. 1, 1–109. 10.4171/QT/145Suche in Google Scholar
[8] S. Gukov, S. Park and P. Putrov, Cobordism invariants from BPS q-series, Ann. Henri Poincaré 22 (2021), no. 12, 4173–4203. 10.1007/s00023-021-01089-2Suche in Google Scholar
[9] S. Gukov, D. Pei, P. Putrov and C. Vafa, BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), no. 2, Article ID 2040003. 10.1142/S0218216520400039Suche in Google Scholar
[10] S. Gukov, P. Putrov and C. Vafa, Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, Article ID 71. 10.1007/JHEP07(2017)071Suche in Google Scholar
[11] K. Hendricks and C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299. 10.1215/00127094-3793141Suche in Google Scholar
[12] P. K. Johnson, Plum: A computer program for analyzing plumbed 3-manifolds, https://github.com/peterkj1/plum. Suche in Google Scholar
[13] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N. S.) 12 (1985), no. 1, 103–111. 10.1090/S0273-0979-1985-15304-2Suche in Google Scholar
[14] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999), 93–107. 10.4310/AJM.1999.v3.n1.a5Suche in Google Scholar
[15] A. Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991–1042. 10.2140/gt.2005.9.991Suche in Google Scholar
[16] A. Némethi, Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 507–543. 10.2977/prims/1210167336Suche in Google Scholar
[17] W. D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. 10.1090/S0002-9947-1981-0632532-8Suche in Google Scholar
[18] P. Ozsváth, A. I. Stipsicz and Z. Szabó, A spectral sequence on lattice homology, Quantum Topol. 5 (2014), no. 4, 487–521. 10.4171/QT/56Suche in Google Scholar
[19] P. Ozsváth, A. I. Stipsicz and Z. Szabó, Knots in lattice homology, Comment. Math. Helv. 89 (2014), no. 4, 783–818. 10.4171/CMH/334Suche in Google Scholar
[20] P. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224. 10.2140/gt.2003.7.185Suche in Google Scholar
[21] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. 10.4007/annals.2004.159.1159Suche in Google Scholar
[22] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. 10.4007/annals.2004.159.1027Suche in Google Scholar
[23] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. 10.1007/BF01239527Suche in Google Scholar
[24] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. 10.1007/BF01217730Suche in Google Scholar
[25] D. Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc. 11, American Mathematical Society, Providence (2010), 659–675. Suche in Google Scholar
[26] I. Zemke, Bordered manifolds with torus boundary and the link surgery formula, preprint (2022), https://arxiv.org/abs/2109.11520v4. Suche in Google Scholar
[27] I. Zemke, The equivalence of lattice and Heegaard Floer homology, preprint (2022), https://arxiv.org/abs/2111.14962. Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The Kottwitz conjecture for unitary PEL-type Rapoport–Zink spaces
- Milnor K-theory of p-adic rings
- Scrollar invariants, syzygies and representations of the symmetric group
- Residual categories of quadric surface bundles
- Uniqueness of entire graphs evolving by mean curvature flow
- Moduli spaces of complex affine and dilation surfaces
- Strominger connection and pluriclosed metrics
- Lattice cohomology and q-series invariants of 3-manifolds
Artikel in diesem Heft
- Frontmatter
- The Kottwitz conjecture for unitary PEL-type Rapoport–Zink spaces
- Milnor K-theory of p-adic rings
- Scrollar invariants, syzygies and representations of the symmetric group
- Residual categories of quadric surface bundles
- Uniqueness of entire graphs evolving by mean curvature flow
- Moduli spaces of complex affine and dilation surfaces
- Strominger connection and pluriclosed metrics
- Lattice cohomology and q-series invariants of 3-manifolds