Home Milnor K-theory of p-adic rings
Article
Licensed
Unlicensed Requires Authentication

Milnor K-theory of p-adic rings

  • Morten Lüders and Matthew Morrow ORCID logo EMAIL logo
Published/Copyright: December 9, 2022

Abstract

We study the mod p r Milnor K-groups of p-adically complete and p-henselian rings, establishing in particular a Nesterenko–Suslin-style description in terms of the Milnor range of syntomic cohomology. In the case of smooth schemes over complete discrete valuation rings we prove the mod p r Gersten conjecture for Milnor K-theory locally in the Nisnevich topology. In characteristic p we show that the Bloch–Kato–Gabber theorem remains true for valuation rings, and for regular formal schemes in a pro sense.

Funding statement: The first author was supported by the DFG Research Fellowship LU 2418/1-1. The second author was partly supported by the ANR JCJC project Périodes en Géométrie Arithmétique et Motivique (ANR-18-CE40-0017).

A A Gersten injectivity result of Gabber

The following injectivity result of Gabber was required in the proof of Theorem 2.17:

Theorem A.1 (Gabber).

Let V be a mixed characteristic discrete valuation ring and R a local, ind-smooth p-henselian V-algebra; let R p R h be the henselisation of the discrete valuation ring R p R , and F := R p R h [ 1 p ] its field of fractions. Let F be a torsion étale sheaf on Spec R [ 1 p ] which is pulled back from Spec V [ 1 p ] . Then the canonical map

H ét n ( R [ 1 p ] , ) H ét n ( F , )

is injective for all n 0 .

Proof.

Since both sides commute with filtered colimits in R, we may assume that R is the henselisation along 𝔭 S 𝔮 of S 𝔮 , where S is a smooth V-algebra and 𝔮 S is some prime ideal containing 𝔭 S ; note that then R 𝔭 R h = S 𝔭 S h , where the latter denotes the henselisation of the discrete valuation ring S 𝔭 S .

The beginning of Gabber’s Gersten resolution [16, equation ( )], at the point 𝔮 of Spec S (Gabber’s scheme M), asserts that the map

H ét n ( Spec S 𝔮 / 𝔭 S 𝔮 , i * R j * ) H ét n ( Spec S 𝔭 A / 𝔭 S 𝔭 A , i * R j * )

is injective, where i , j are the usual closed and open inclusions

Spec S / 𝔭 S 𝑖 Spec S 𝑗 Spec S [ 1 p ] ,

and we suppress the additional pullbacks along

Spec S 𝔭 R / 𝔭 S 𝔭 S Spec S 𝔮 / 𝔭 S 𝔮 Spec S / 𝔭 S

from the notation.

Noting that R / 𝔭 R = S 𝔮 / 𝔭 S 𝔮 , Gabber’s affine analogue of the proper base change theorem [15] implies that the canonical map

H ét n ( Spec R [ 1 p ] , ) = H ét n ( Spec R , R j * ) H ét n ( Spec S 𝔮 / 𝔭 S 𝔮 , i * R j * )

is an isomorphism. The analogous assertion is equally true for the henselian surjection

R 𝔭 R h R 𝔭 A / 𝔭 R 𝔭 A = S 𝔭 A / 𝔭 S 𝔭 A ,

thereby completing the proof. ∎

Acknowledgements

We thank Bhargav Bhatt, Dustin Clausen, and Akhil Mathew for discussions and Shuji Saito for related correspondence. We are grateful to Elden Elmanto for comments on the paper, and to the anonymous referees for various suggestions and improvements.

References

[1] M. André, Homologie des algèbres commutatives, Grundlehren Math. Wiss. 206, Springer, Berlin 1974. 10.1007/978-3-642-51449-4Search in Google Scholar

[2] B. Antieau, A. Mathew, M. Morrow and T. Nikolaus, On the Beilinson fiber square, preprint (2020), https://arxiv.org/abs/2003.12541; to apper in Duke Math. J.. 10.1215/00127094-2022-0037Search in Google Scholar

[3] B. Bhatt and A. Mathew, Syntomic complexes and p-adic étale Tate twists, preprint (2022), https://arxiv.org/abs/2202.04818. 10.1017/fmp.2022.21Search in Google Scholar

[4] B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral p-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. 10.1007/s10240-019-00106-9Search in Google Scholar

[5] S. Bloch, p-adic étale cohomology, Arithmetic and geometry, Vol. I, Progr. Math. 35, Birkhäuser, Boston (1983), 13–26. 10.1007/978-1-4757-9284-3_2Search in Google Scholar

[6] S. Bloch, A note on Gersten’s conjecture in the mixed characteristic case, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II, Contemp. Math. 55, American Mathematical Society, Providence (1986), 75–78. 10.1090/conm/055.1/862630Search in Google Scholar

[7] S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107–152. 10.1007/978-1-4757-9284-3_2Search in Google Scholar

[8] D. Clausen, A. Mathew and M. Morrow, K-theory and topological cyclic homology of henselian pairs, J. Amer. Math. Soc. 34 (2021), no. 2, 411–473. 10.1090/jams/961Search in Google Scholar

[9] J.-L. Colliot-Thélène, Cohomologie galoisienne des corps valués discrets henseliens, d’après K. Kato et S. Bloch, Algebraic K-theory and its applications (Trieste 1997), World Science, River Edge (1999), 120–163. Search in Google Scholar

[10] C. Dahlhausen, Milnor K-theory of complete discrete valuation rings with finite residue fields, J. Pure Appl. Algebra 222 (2018), no. 6, 1355–1371. 10.1016/j.jpaa.2017.07.002Search in Google Scholar

[11] R. K. Dennis and M. R. Stein, K 2 of discrete valuation rings, Adv. Math. 18 (1975), no. 2, 182–238. 10.1016/0001-8708(75)90157-7Search in Google Scholar

[12] R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 553–603. 10.24033/asens.1258Search in Google Scholar

[13] E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo and M. Yakerson, Modules over algebraic cobordism, Forum Math. Pi 8 (2020), Article ID e14. 10.1017/fmp.2020.13Search in Google Scholar

[14] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, 2nd ed., Transl. Math. Monogr. 121, American Mathematical Society, Providence 2002. Search in Google Scholar

[15] O. Gabber, Affine analog of the proper base change theorem, Israel J. Math. 87 (1994), no. 1–3, 325–335. 10.1007/BF02773001Search in Google Scholar

[16] O. Gabber, Gersten’s conjecture for some complexes of vanishing cycles, Manuscripta Math. 85 (1994), no. 3–4, 323–343. 10.1007/BF02568202Search in Google Scholar

[17] O. Gabber and L. Ramero, Almost ring theory, Lecture Notes in Math. 1800, Springer, Berlin 2003. 10.1007/b10047Search in Google Scholar

[18] T. Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), no. 4, 773–794. 10.1007/s00209-004-0680-xSearch in Google Scholar

[19] T. Geisser and M. Levine, The K-theory of fields in characteristic p, Invent. Math. 139 (2000), no. 3, 459–493. 10.1007/s002220050014Search in Google Scholar

[20] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math. 101, Cambridge University, Cambridge 2006. 10.1017/CBO9780511607219Search in Google Scholar

[21] H. Gillet and M. Levine, The relative form of Gersten’s conjecture over a discrete valuation ring: The smooth case, J. Pure Appl. Algebra 46 (1987), no. 1, 59–71. 10.1016/0022-4049(87)90043-0Search in Google Scholar

[22] M. Gros and N. Suwa, Application d’Abel–Jacobi p-adique et cycles algébriques, Duke Math. J. 57 (1988), no. 2, 579–613. 10.1215/S0012-7094-88-05726-2Search in Google Scholar

[23] L. Illusie, Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), no. 4, 501–661. 10.24033/asens.1374Search in Google Scholar

[24] O. Izhboldin, On p-torsion in K * M for fields of characteristic p, Algebraic K-theory, Adv. Soviet Math. 4, American Mathematical Society, Providence (1991), 129–144. 10.1090/advsov/004/08Search in Google Scholar

[25] O. Izhboldin, p-primary part of the Milnor K-groups and Galois cohomologies of fields of characteristic p, Invitation to higher local fields (Münster 1999), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry (2000), 19–41. 10.2140/gtm.2000.3.19Search in Google Scholar

[26] C. Kassel and A. B. Sletsjø e, Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology, Math. Scand. 70 (1992), no. 2, 186–192. 10.7146/math.scand.a-12395Search in Google Scholar

[27] S. Kelly and M. Morrow, K-theory of valuation rings, Compos. Math. 157 (2021), no. 6, 1121–1142. 10.1112/S0010437X21007119Search in Google Scholar

[28] M. Kerz, The Gersten conjecture for Milnor K-theory, Invent. Math. 175 (2009), no. 1, 1–33. 10.1007/s00222-008-0144-8Search in Google Scholar

[29] M. Kerz, Milnor K-theory of local rings with finite residue fields, J. Algebraic Geom. 19 (2010), no. 1, 173–191. 10.1090/S1056-3911-09-00514-1Search in Google Scholar

[30] M. Kerz, H. Esnault and O. Wittenberg, A restriction isomorphism for cycles of relative dimension zero, Camb. J. Math. 4 (2016), no. 2, 163–196. 10.4310/CJM.2016.v4.n2.a1Search in Google Scholar

[31] M. Kerz, F. Strunk and G. Tamme, Algebraic K-theory and descent for blow-ups, Invent. Math. 211 (2018), no. 2, 523–577. 10.1007/s00222-017-0752-2Search in Google Scholar

[32] M. Kolster, K 2 of noncommutative local rings, J. Algebra 95 (1985), no. 1, 173–200. 10.1016/0021-8693(85)90100-0Search in Google Scholar

[33] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field, Invent. Math. 93 (1988), no. 2, 451–480. 10.1007/BF01394341Search in Google Scholar

[34] M. Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. Search in Google Scholar

[35] M. Lüders, Algebraization for zero-cycles and the p-adic cycle class map, Math. Res. Lett. 26 (2019), no. 2, 557–585. 10.4310/MRL.2019.v26.n2.a8Search in Google Scholar

[36] M. Lüders, Deformation theory of the Chow group of zero cycles, Q. J. Math. 71 (2020), no. 2, 677–701. 10.1093/qmathj/haaa004Search in Google Scholar

[37] M. Lüders, On the relative Gersten conjecture for Milnor K-theory in the smooth case, preprint (2020), https://arxiv.org/abs/2010.02622. Search in Google Scholar

[38] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud. 72, Princeton University, Princeton 1971. 10.1515/9781400881796Search in Google Scholar

[39] M. Morrow, K 2 of localisations of local rings, J. Algebra 399 (2014), 190–204. 10.1016/j.jalgebra.2013.09.026Search in Google Scholar

[40] M. Morrow, Pro unitality and pro excision in algebraic K-theory and cyclic homology, J. reine angew. Math. 736 (2018), 95–139. 10.1515/crelle-2015-0007Search in Google Scholar

[41] M. Morrow, K-theory and logarithmic Hodge–Witt sheaves of formal schemes in characteristic p, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 6, 1537–1601. 10.24033/asens.2415Search in Google Scholar

[42] J. Nakamura, On the Milnor K-groups of complete discrete valuation fields, Doc. Math. 5 (2000), 151–200. 10.2140/gtm.2000.3.123Search in Google Scholar

[43] J. Nakamura, On the structure of the Milnor K-groups of complete discrete valuation fields, Invitation to higher local fields (Münster 1999), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry (2000), 123–135. 10.2140/gtm.2000.3.123Search in Google Scholar

[44] Y. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor’s K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146. 10.1070/IM1990v034n01ABEH000610Search in Google Scholar

[45] Y. A. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, Algebraic K-theory: Connections with geometry and topology (Lake Louise 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 279, Kluwer Academic, Dordrecht (1989), 241–342. 10.1007/978-94-009-2399-7_11Search in Google Scholar

[46] I. A. Panin, The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Steklova 241 (2003), 169–178. Search in Google Scholar

[47] D. Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories, Lecture Notes in Math. 341, Springer, Berlin (1973), 85–147. 10.1007/BFb0067053Search in Google Scholar

[48] K. Sato, p-adic étale Tate twists and arithmetic duality, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), no. 4, 519–588. 10.1016/j.ansens.2007.04.002Search in Google Scholar

[49] P. Schneider, p-adic points of motives, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence (1994), 225–249. 10.1090/pspum/055.2/1265555Search in Google Scholar

[50] M. R. Stein and R. K. Dennis, K 2 of radical ideals and semi-local rings revisited, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic, Lecture Notes in Math. 342, Springer, Berlin (1973), 281–303. Search in Google Scholar

[51] A. A. Suslin and V. A. Yarosh, Milnor’s K 3 of a discrete valuation ring, Algebraic K-theory, Adv. Soviet Math. 4, American Mathematical Society, Providence (1991), 155–170. 10.1090/advsov/004/10Search in Google Scholar

[52] J. Tate, Relations between K 2 and Galois cohomology, Invent. Math. 36 (1976), 257–274. 10.1007/BF01390012Search in Google Scholar

[53] B. Totaro, Milnor K-theory is the simplest part of algebraic K-theory, K-Theory 6 (1992), no. 2, 177–189. 10.1007/BF01771011Search in Google Scholar

[54] W. van der Kallen, The K 2 of rings with many units, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 4, 473–515. 10.24033/asens.1334Search in Google Scholar

[55] W. van der Kallen, H. Maazen and J. Stienstra, A presentation for some K 2 ( n , R ) , Bull. Amer. Math. Soc. 81 (1975), no. 5, 934–936. 10.1090/S0002-9904-1975-13894-8Search in Google Scholar

[56] C. A. Weibel, The K-book, Grad. Stud. Math. 145, American Mathematical Society, Providence, 2013. Search in Google Scholar

Received: 2021-09-03
Revised: 2022-09-16
Published Online: 2022-12-09
Published in Print: 2023-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2022-0079/html
Scroll to top button