Startseite Quasiexcellence implies strong generation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quasiexcellence implies strong generation

Veröffentlicht/Copyright: 14. August 2021

Abstract

We prove that the bounded derived category of coherent sheaves on a quasicompact separated quasiexcellent scheme of finite dimension has a strong generator in the sense of Bondal–Van den Bergh. This simultaneously extends two results of Iyengar–Takahashi and Neeman and is new even in the affine case. The main ingredient includes Gabber’s weak local uniformization theorem and the notions of boundedness and descendability of a morphism of schemes.

Acknowledgements

I would like to thank Shane Kelly for introducing [11] to me, and Amnon Neeman and Michael Temkin for answering several questions. I also thank Amnon, Greg Stevenson, and an anonymous referee for helpful feedback on previous versions of this paper.

References

[1] P. Balmer, Separable extensions in tensor-triangular geometry and generalized Quillen stratification, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 907–925. 10.24033/asens.2298Suche in Google Scholar

[2] A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces. I (Luminy 1981), Astérisque 100, Société Mathématique de France, Paris (1982), 5–171. Suche in Google Scholar

[3] B. Bhatt and P. Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017), no. 2, 329–423. 10.1007/s00222-016-0710-4Suche in Google Scholar

[4] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258. 10.17323/1609-4514-2003-3-1-1-36Suche in Google Scholar

[5] J. D. Christensen, Ideals in triangulated categories: Phantoms, ghosts and skeleta, Adv. Math. 136 (1998), no. 2, 284–339. 10.1006/aima.1998.1735Suche in Google Scholar

[6] L. Illusie, Y. Laszlo and F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Société Mathématique de France, Paris 2014. Suche in Google Scholar

[7] S. B. Iyengar and R. Takahashi, Annihilation of cohomology and strong generation of module categories, Int. Math. Res. Not. IMRN 2016 (2016), no. 2, 499–535. 10.1093/imrn/rnv136Suche in Google Scholar

[8] G. M. Kelly, Chain maps inducing zero homology maps, Proc. Cambridge Philos. Soc. 61 (1965), 847–854. 10.1017/S0305004100039207Suche in Google Scholar

[9] J. Lurie, Higher algebra, Harvard University, Cambridge 2017. Suche in Google Scholar

[10] A. Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. 10.1016/j.aim.2015.12.017Suche in Google Scholar

[11] A. Neeman, Strong generators in 𝐃perf(X) and 𝐃cohb(X), Ann. of Math. (2) 193 (2021), no. 3, 689–732. 10.4007/annals.2021.193.3.1Suche in Google Scholar

[12] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193–256. 10.1017/is008004024jkt010Suche in Google Scholar

Received: 2020-10-22
Revised: 2021-05-22
Published Online: 2021-08-14
Published in Print: 2021-11-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0034/html?lang=de
Button zum nach oben scrollen