Startseite Local-to-global Urysohn width estimates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Local-to-global Urysohn width estimates

  • Alexey Balitskiy ORCID logo EMAIL logo und Aleksandr Berdnikov
Veröffentlicht/Copyright: 25. August 2021

Abstract

The notion of the Urysohn d-width measures to what extent a metric space can be approximated by a d-dimensional simplicial complex. We investigate how local Urysohn width bounds on a Riemannian manifold affect its global width. We bound the 1-width of a Riemannian manifold in terms of its first homology and the supremal width of its unit balls. Answering a question of Larry Guth, we give examples of n-manifolds of considerable (n-1)-width in which all unit balls have arbitrarily small 1-width. We also give examples of topologically simple manifolds that are locally nearly low-dimensional.

Acknowledgements

We are grateful to Larry Guth for numerous conversations and his remarks on this paper. We also thank Hannah Alpert and Panos Papasoglu for the stimulating discussions that led us to these questions. The results constitute a chapter of the thesis defended by the first-named author under the supervision of Larry Guth at MIT.

References

[1] A. Akopyan, R. Karasev and A. Volovikov, Borsuk–Ulam type theorems for metric spaces, preprint (2012), https://arxiv.org/abs/1209.1249. Suche in Google Scholar

[2] P. Alexandroff, Notes supplémentaires au “Mémoire sur les multiplicités Cantoriennes”, rédigées d’après les papiers posthumes de Paul Urysohn, Fund. Math. 1 (1926), no. 8, 352–359. 10.4064/fm-8-1-352-359Suche in Google Scholar

[3] L. E. J. Brouwer, Über den natürlichen Dimensionsbegriff, J. reine angew. Math. 142 (1913), 146–152. 10.1515/crll.1913.142.146Suche in Google Scholar

[4] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. 10.4310/jdg/1214509283Suche in Google Scholar

[5] M. Gromov, Width and related invariants of Riemannian manifolds, Astérisque 163–164 (1988), 93–109. Suche in Google Scholar

[6] L. Guth, Lipschitz maps from surfaces, Geom. Funct. Anal. 15 (2005), no. 5, 1052–1090. 10.1007/s00039-005-0532-9Suche in Google Scholar

[7] L. Guth, Volumes of balls in Riemannian manifolds and Uryson width, J. Topol. Anal. 9 (2017), no. 2, 195–219. 10.1142/S1793525317500029Suche in Google Scholar

[8] H. Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n+p dimensions, Math. Ann. 70 (1911), no. 2, 166–168. 10.1007/BF01461155Suche in Google Scholar

[9] Y. Liokumovich, B. Lishak, A. Nabutovsky and R. Rotman, Filling metric spaces, preprint (2019), https://arxiv.org/abs/1905.06522. 10.1215/00127094-2021-0039Suche in Google Scholar

[10] A. Nabutovsky, Linear bounds for constants in Gromov’s systolic inequality and related results, preprint (2019), https://arxiv.org/abs/1909.12225. Suche in Google Scholar

[11] P. Papasoglu, Uryson width and volume, Geom. Funct. Anal. 30 (2020), no. 2, 574–587. 10.1007/s00039-020-00533-5Suche in Google Scholar

[12] J. Y. Shi, The Kazhdan–Lusztig cells in certain affine Weyl groups, Lecture Notes in Math. 1179, Springer, Berlin 1986. 10.1007/BFb0074968Suche in Google Scholar

Received: 2021-03-10
Revised: 2021-08-03
Published Online: 2021-08-25
Published in Print: 2021-11-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0047/html
Button zum nach oben scrollen