Modular symbols for Teichmüller curves
-
Curtis T. McMullen
Abstract
This paper introduces a space of nonabelian modular symbols
Funding statement: Research supported in part by the NSF.
A Modular symbols and the Weil–Petersson metric
For some additional perspective on modular symbols, in this Appendix we give a short proof of:
Theorem A.1.
Let
Here
Proof.
Let
Moreover,
Let
Extending the definition to all modular symbols by
we obtain a functor
We now make two geometric observations. Suppose
since length can only be lost in the geometric limit. On the other hand, we also have
for all n sufficiently large. Indeed, for all
Combining these two observations, we find
Let
and hence, by the properties of
It remains to show that
Remark.
A related result, valid for all
References
[Bi] B. J. Birch, Elliptic curves over Q: A progress report, 1969 Number Theory Institute (Stony Brook 1969), Proc. Sympos. Pure Math. 20, American Mathematical Society, Providence (1971), 396–400. 10.1090/pspum/020/0314845Suche in Google Scholar
[BM] D. W. Boyd and R. D. Mauldin, The order type of the set of Pisot numbers, Topology Appl. 69 (1996), no. 2, 115–120. 10.1016/0166-8641(95)00029-1Suche in Google Scholar
[BB] J. F. Brock and K. W. Bromberg, Inflexibility, Weil–Peterson distance, and volumes of fibered 3-manifolds, Math. Res. Lett. 23 (2016), no. 3, 649–674. 10.4310/MRL.2016.v23.n3.a4Suche in Google Scholar
[DL] D. Davis and S. Lelièvre, Periodic paths on the pentagon, double pentagon and golden L, preprint (2018), https://arxiv.org/abs/1810.11310. Suche in Google Scholar
[Fo] G. Forni, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle. With an appendix by Carlos Matheus, J. Mod. Dyn. 5 (2011), no. 2, 355–395. 10.3934/jmd.2011.5.355Suche in Google Scholar
[FMZ] G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn. 5 (2011), no. 2, 285–318. 10.3934/jmd.2011.5.285Suche in Google Scholar
[HM] F. P. Gardiner and H. Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2–3, 209–237. 10.1080/17476939108814480Suche in Google Scholar
[GJ] E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. 10.1215/S0012-7094-00-10321-3Suche in Google Scholar
[HS] F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr. 281 (2008), no. 2, 219–237. 10.1002/mana.200510597Suche in Google Scholar
[Ho] W. P. Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. IMRN 2013 (2013), no. 12, 2657–2698. 10.1093/imrn/rns124Suche in Google Scholar
[HL] P. Hubert and E. Lanneau, Veech groups without parabolic elements, Duke Math. J. 133 (2006), no. 2, 335–346. 10.1215/S0012-7094-06-13326-4Suche in Google Scholar
[KS] R. Kenyon and J. Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000), no. 1, 65–108. 10.1007/s000140050113Suche in Google Scholar
[La] S. Lang, Introduction to modular forms. With appendixes by D. Zagier and Walter Feit. Corrected reprint of the 1976 original, Grundlehren Math. Wiss. 222, Springer, Berlin 1995. 10.1007/978-3-642-51447-0_1Suche in Google Scholar
[Lei] C. J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004), 1301–1359. 10.2140/gt.2004.8.1301Suche in Google Scholar
[Le] G. Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119–135. 10.1016/0040-9383(83)90023-XSuche in Google Scholar
[Man] Y. I. Manin, Lectures on modular symbols, Arithmetic geometry, Clay Math. Proc. 8, American Mathematical Society, Providence (2009), 137–152. Suche in Google Scholar
[Mas] H. Masur, Ergodic theory of translation surfaces, Handbook of dynamical systems. Vol. 1B, Elsevier, Amsterdam (2006), 527–547. 10.1016/S1874-575X(06)80032-9Suche in Google Scholar
[MT] K. Matsuzaki and M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Math. Monogr., Oxford University Press, New York 1998. 10.1093/oso/9780198500629.001.0001Suche in Google Scholar
[Maz] B. Mazur, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki. 24ème année (1971/1972), Lecture Notes in Math. 317, Springer, Berlin (1973), Exp. No. 414, 277–294. 10.1007/BFb0069287Suche in Google Scholar
[Mc1] C. T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885. 10.1090/S0894-0347-03-00432-6Suche in Google Scholar
[Mc2] C. T. McMullen, Prym varieties and Teichmüller curves, Duke Math. J. 133 (2006), no. 3, 569–590. 10.1215/S0012-7094-06-13335-5Suche in Google Scholar
[Mc3] C. T. McMullen, Braid groups and Hodge theory, Math. Ann. 355 (2013), no. 3, 893–946. 10.1007/s00208-012-0804-2Suche in Google Scholar
[Mc4] C. T. McMullen, Cascades in the dynamics of measured foliations, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 1, 1–39. 10.24033/asens.2237Suche in Google Scholar
[Mc5] C. T. McMullen, Teichmüller dynamics and unique ergodicity via currents and Hodge theory, J. reine angew. Math. 768 (2020), 39–54. 10.1515/crelle-2019-0037Suche in Google Scholar
[Mc6] C. T. McMullen, Billiards, heights and the arithmetic of non-arithmetic groups, preprint (2020). 10.1007/s00222-022-01101-4Suche in Google Scholar
[Mo1] M. Möller, Affine groups of flat surfaces, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys. 13, European Mathematical Society, Zürich (2009), 369–387. 10.4171/055-1/11Suche in Google Scholar
[Mo2] M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn. 5 (2011), no. 1, 1–32. 10.3934/jmd.2011.5.1Suche in Google Scholar
[MS] S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 149–159. 10.1017/S0143385700008282Suche in Google Scholar
[Mun] J. R. Munkres, Elementary algebraic topology, Addison-Wesley, Reading 1984. Suche in Google Scholar
[Th1] W. P. Thurston, Geometry and topology of three-manifolds, Lecture notes, Princeton University, Princeton (1979). Suche in Google Scholar
[Th2] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. 10.1090/S0273-0979-1988-15685-6Suche in Google Scholar
[Th3] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Math. Ser. 35, Princeton University Press, Princeton 1997. 10.1515/9781400865321Suche in Google Scholar
[Th4] W. P. Thurston, Entropy in dimension one, Frontiers in complex dynamics, Princeton Math. Ser. 51, Princeton University Press, Princeton (2014), 339–384. 10.1515/9781400851317-016Suche in Google Scholar
[V1] W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. 10.1007/BF01388890Suche in Google Scholar
[V2] W. A. Veech, The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992), no. 3, 341–379. 10.1007/BF01896876Suche in Google Scholar
[Wol] S. A. Wolpert, Geometry of the Weil–Petersson completion of Teichmüller space, Surveys in differential geometry, Vol. VIII (Boston 2002), Surv. Differ. Geom. 8, International Press, Somerville (2003), 357–393. 10.4310/SDG.2003.v8.n1.a13Suche in Google Scholar
[Z] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin (2006), 437–583. 10.1007/978-3-540-31347-2_13Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The nondegenerate generalized Kähler Calabi–Yau problem
- Parity sheaves and Smith theory
- Modular symbols for Teichmüller curves
- Eisenstein series and the top degree cohomology of arithmetic subgroups of SLn/ℚ
- Higher-page Bott–Chern and Aeppli cohomologies and applications
- Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation
- Characterizing Jacobians via the KP equation and via flexes and degenerate trisecants to the Kummer variety: An algebro-geometric approach
- Polynomially convex embeddings of odd-dimensional closed manifolds
Artikel in diesem Heft
- Frontmatter
- The nondegenerate generalized Kähler Calabi–Yau problem
- Parity sheaves and Smith theory
- Modular symbols for Teichmüller curves
- Eisenstein series and the top degree cohomology of arithmetic subgroups of SLn/ℚ
- Higher-page Bott–Chern and Aeppli cohomologies and applications
- Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation
- Characterizing Jacobians via the KP equation and via flexes and degenerate trisecants to the Kummer variety: An algebro-geometric approach
- Polynomially convex embeddings of odd-dimensional closed manifolds