Home The nondegenerate generalized Kähler Calabi–Yau problem
Article
Licensed
Unlicensed Requires Authentication

The nondegenerate generalized Kähler Calabi–Yau problem

  • Vestislav Apostolov and Jeffrey Streets EMAIL logo
Published/Copyright: April 29, 2021

Abstract

We formulate a Calabi–Yau-type conjecture in generalized Kähler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kähler structures generalizing the notion of Kähler class, we conjecture unique solvability of Gualtieri’s Calabi–Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kähler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeroes of a moment map associated to a Hamiltonian action and finding a Kempf–Ness functional. Lastly we indicate the naturality of generalized Kähler–Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf–Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kähler metrics. On a hyper-Kähler background, we establish global existence and weak convergence of the flow.

Award Identifier / Grant number: DMS-1454854

Funding statement: The first author was supported in par by an NSERC Discovery Grant and is grateful to the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences where a part of this project was realized. The second author gratefully acknowledges support from the NSF via DMS-1454854, and from an Alfred P. Sloan Fellowship.

Acknowledgements

The second author would like to thank Marco Gualtieri for helpful discussions on this topic. The authors thank the referee for useful comments.

References

[1] D. V. Alekseevsky, S. Marchiafava and M. Pontecorvo, Compatible complex structures on almost quaternionic manifolds, Trans. Amer. Math. Soc. 351 (1999), no. 3, 997–1014. 10.1090/S0002-9947-99-02201-1Search in Google Scholar

[2] B. Alexandrov and S. Ivanov, Vanishing theorems on Hermitian manifolds, Differential Geom. Appl. 14 (2001), no. 3, 251–265. 10.1016/S0926-2245(01)00044-4Search in Google Scholar

[3] V. Apostolov, P. Gauduchon and G. Grantcharov, BiHermitian structures on complex surfaces, Proc. Lond. Math. Soc. (3) 79 (1999), 414–428; corrigendum, Proc. Lond. Math. Soc. (3) 92 (2006), 200–202. 10.1112/S0024611599012058Search in Google Scholar

[4] T. Aubin, Réduction du cas positif de l’équation de Monge–Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143–153. 10.1016/0022-1236(84)90093-4Search in Google Scholar

[5] G. Bande and D. Kotschick, The geometry of recursion operators, Comm. Math. Phys. 280 (2008), no. 3, 737–749. 10.1007/s00220-008-0477-6Search in Google Scholar

[6] A. Banyaga, The structure of classical diffeomorphism groups, Math. Appl. 400, Kluwer Academic, Dordrecht 1997. 10.1007/978-1-4757-6800-8Search in Google Scholar

[7] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782. 10.4310/jdg/1214438181Search in Google Scholar

[8] R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. 10.1007/s10240-012-0046-6Search in Google Scholar

[9] J.-M. Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989), no. 4, 681–699. 10.1007/BF01443359Search in Google Scholar

[10] F. A. Bogomolov, The decomposition of Kähler manifolds with a trivial canonical class, Mat. Sb. (N. S.) 93(135) (1974), 573–575. 10.1070/SM1974v022n04ABEH001706Search in Google Scholar

[11] L. Boulanger, Toric generalized Kähler structures, J. Symplectic Geom. 17 (2019), no. 4, 973–1019. 10.4310/JSG.2019.v17.n4.a2Search in Google Scholar

[12] H. D. Cao, Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. 10.1007/BF01389058Search in Google Scholar

[13] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Series) 46, Kluwer Academic, Dordrecht 1989. 10.1007/978-94-009-2366-9Search in Google Scholar

[14] J.-P. Demailly, Complex analytic and differential geometry, Lecture Notes (2012). Search in Google Scholar

[15] J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274. 10.4007/annals.2004.159.1247Search in Google Scholar

[16] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-manifold topology, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math. 5, World Scientific, River Edge (1997), 384–403. 10.1142/9789812385215_0042Search in Google Scholar

[17] J. Fine, The Hamiltonian geometry of the space of unitary connections with symplectic curvature, J. Symplectic Geom. 12 (2014), no. 1, 105–123. 10.4310/JSG.2014.v12.n1.a4Search in Google Scholar

[18] A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), no. 3, 231–243; translation in Sugaku Expositions 5 (1992), no. 2, 173–191. Search in Google Scholar

[19] S. J. Gates, Jr., C. M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nuclear Phys. B 248 (1984), no. 1, 157–186. 10.1016/0550-3213(84)90592-3Search in Google Scholar

[20] P. Gauduchon, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France 105 (1977), no. 2, 113–140. 10.24033/bsmf.1846Search in Google Scholar

[21] P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495–518. 10.1007/BF01455968Search in Google Scholar

[22] P. Gauduchon, Hermitian connections and Dirac operators, Boll. Unione Mat. Ital. B (7) 11 (1997), no. 2, 257–288. Search in Google Scholar

[23] P. Gauduchon, Calabi’s extremal Kähler metrics: An elementary introduction, unpublished book available upon request. Search in Google Scholar

[24] P. Gauduchon, Symplectic biHermitian structures, unpublished. Search in Google Scholar

[25] R. Goto, Scalar curvature as moment map in generalized Kähler geometry, J. Symplectic Geom. 18 (2020), no. 1, 147–190. 10.4310/JSG.2020.v18.n1.a4Search in Google Scholar

[26] M. Gualtieri, Generalized Kähler geometry, preprint (2010), https://arxiv.org/abs/1007.3485; Ann. of Math. (2) 174 (2011), no. 1, 75–123. 10.1007/s00220-014-1926-zSearch in Google Scholar

[27] M. Gualtieri, Generalized Kähler geometry, Comm. Math. Phys. 331 (2014), no. 1, 297–331. 10.1007/s00220-014-1926-zSearch in Google Scholar

[28] D. Guan, Examples of compact holomorphic symplectic manifolds which admit no Kähler structure, Geometry and analysis on complex manifolds – Festschrift for Professor S. Kobayashi’s 60th birthday, World Scientific, River Edge (1994), 63–74. 10.1142/9789814350112_0004Search in Google Scholar

[29] D. Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian. II, Invent. Math. 121 (1995), no. 1, 135–145. 10.1007/BF01884293Search in Google Scholar

[30] D. Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian. III, Internat. J. Math. 6 (1995), no. 5, 709–718. 10.1142/S0129167X95000298Search in Google Scholar

[31] N. Hitchin, Generalized Calabi–Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281–308. 10.1093/qmath/hag025Search in Google Scholar

[32] N. Hitchin, Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys. 265 (2006), no. 1, 131–164. 10.1007/s00220-006-1530-ySearch in Google Scholar

[33] C. M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Calabi–Yau metric and generalized Monge–Ampère equation, J. High Energy Phys. 2010 (2010), no. 8, Paper No. 60. 10.1007/JHEP08(2010)060Search in Google Scholar

[34] D. Huybrechts, Generalized Calabi–Yau structures, K3 surfaces, and B-fields, Internat. J. Math. 16 (2005), no. 1, 13–36. 10.1142/S0129167X05002734Search in Google Scholar

[35] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University, Cambridge 2016. 10.1017/CBO9781316594193Search in Google Scholar

[36] S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001), no. 6, 1089–1110. 10.1088/0264-9381/18/6/309Search in Google Scholar

[37] D. D. Joyce, Compact manifolds with special holonomy, Oxford Math. Monogr., Oxford University, Oxford 2000. 10.1093/oso/9780198506010.001.0001Search in Google Scholar

[38] B. Khesin, J. Lenells, G. Misioł ek and S. C. Preston, Curvatures of Sobolev metrics on diffeomorphism groups, Pure Appl. Math. Q. 9 (2013), no. 2, 291–332. 10.4310/PAMQ.2013.v9.n2.a2Search in Google Scholar

[39] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, II, Interscience, New York 1963. Search in Google Scholar

[40] M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), no. 1, 159–177. 10.1007/s002080050108Search in Google Scholar

[41] J. Streets, Pluriclosed flow, Born–Infeld geometry, and rigidity results for generalized Kähler manifolds, Comm. Partial Differential Equations 41 (2016), no. 2, 318–374. 10.1080/03605302.2015.1116560Search in Google Scholar

[42] J. Streets, Generalized Kähler–Ricci flow and the classification of nondegenerate generalized Kähler surfaces, Adv. Math. 316 (2017), 187–215. 10.1016/j.aim.2017.06.002Search in Google Scholar

[43] J. Streets, Pluriclosed flow on generalized Kähler manifolds with split tangent bundle, J. reine angew. Math. 739 (2018), 241–276. 10.1515/crelle-2015-0055Search in Google Scholar

[44] J. Streets and G. Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 2010 (2010), no. 16, 3101–3133. 10.1093/imrn/rnp237Search in Google Scholar

[45] J. Streets and G. Tian, Hermitian curvature flow, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 601–634. 10.4171/JEMS/262Search in Google Scholar

[46] J. Streets and G. Tian, Generalized Kähler geometry and the pluriclosed flow, Nuclear Phys. B 858 (2012), no. 2, 366–376. 10.1016/j.nuclphysb.2012.01.008Search in Google Scholar

[47] J. Streets and G. Tian, Regularity results for the pluriclosed flow, Geom. Topol. 17 (2013), 2389–2429. 10.2140/gt.2013.17.2389Search in Google Scholar

[48] S. T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA 74 (1977), no. 5, 1798–1799. 10.1073/pnas.74.5.1798Search in Google Scholar PubMed PubMed Central

[49] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. 10.1002/cpa.3160310304Search in Google Scholar

Received: 2017-07-27
Revised: 2021-03-05
Published Online: 2021-04-29
Published in Print: 2021-08-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2021-0016/html
Scroll to top button