Startseite Finite quasi-quantum groups of diagonal type
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Finite quasi-quantum groups of diagonal type

  • Hua-Lin Huang , Gongxiang Liu , Yuping Yang und Yu Ye
Veröffentlicht/Copyright: 1. März 2018

Abstract

In this paper, we give a classification of finite-dimensional radically graded elementary quasi-Hopf algebras of diagonal type, or equivalently, finite-dimensional coradically graded pointed Majid algebras of diagonal type. By a Tannaka–Krein type duality, this determines a big class of pointed finite tensor categories. Some efficient methods of construction are also given.

Award Identifier / Grant number: 11722106

Award Identifier / Grant number: 11431010

Award Identifier / Grant number: 11571199

Award Identifier / Grant number: 11571329

Funding statement: Supported by NSFC 11722106, 11431010, 11571199, and 11571329.

Acknowledgements

We would like thank the referee for his/her very valuable comments which improved the paper greatly.

References

[1] N. Andruskiewitsch, On finite-dimensional Hopf algebras, Proceedings of the international congress of mathematicians. Vol. II: Invited lectures (Seoul 2014), KM Kyung Moon Sa, Seoul (2014), 117–142. 10.1090/conm/294/04969Suche in Google Scholar

[2] N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math 154 (2000), 1–45. 10.1006/aima.1999.1880Suche in Google Scholar

[3] N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ. 43, Cambridge University Press, Cambridge (2002), 1–68. 10.1017/9781009701396.002Suche in Google Scholar

[4] N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375–417. 10.4007/annals.2010.171.375Suche in Google Scholar

[5] I. Angiono, On Nichols algebras of diagonal type, J. reine angew. Math. 683 (2013), 189–251. 10.1515/crelle-2011-0008Suche in Google Scholar

[6] I. E. Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225 (2010), no. 6, 3545–3575. 10.1016/j.aim.2010.06.013Suche in Google Scholar

[7] A. Ardizzoni and A. Pavarin, Bosonization for dual quasi-bialgebras and preantipode, J. Algebra 390 (2013), 126–159. 10.1016/j.jalgebra.2013.05.014Suche in Google Scholar

[8] R. Dijkgraaf, V. Pasquier and P. Roche, Quasi-Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18 (1990), 60–72. 10.1016/0920-5632(91)90123-VSuche in Google Scholar

[9] V. G. Drinfel’d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148. Suche in Google Scholar

[10] S. Eilenberg and S. MacLane, Cohomology theory of Abelian groups and homotopy theory, Proc. Natl. Acad. Sci. USA 36 (1950), 443–447. 10.1073/pnas.36.8.443Suche in Google Scholar PubMed PubMed Central

[11] P. Etingof and and S. Gelaki, Finite-dimensional quasi-Hopf algebras with radical of codimension 2, Math. Res. Lett. 11 (2004), no. 5–6, 685–696. 10.4310/MRL.2004.v11.n5.a11Suche in Google Scholar

[12] P. Etingof and and S. Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2005), no. 2, 371–378. 10.17323/1609-4514-2005-5-2-371-378Suche in Google Scholar

[13] P. Etingof and and S. Gelaki, Liftings of graded quasi-Hopf algebras with radical of prime codimension, J. Pure Appl. Algebra 205 (2006), no. 2, 310–322. 10.1016/j.jpaa.2005.06.016Suche in Google Scholar

[14] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, Math. Surveys Monogr. 205, American Mathematical Society, Providence 2015. 10.1090/surv/205Suche in Google Scholar

[15] P. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627–654. 10.1090/surv/205/06Suche in Google Scholar

[16] S. Gelaki, Basic quasi-Hopf algebras of dimension n3, J. Pure Appl. Algebra 198 (2005), no. 1–3, 165–174. 10.1016/j.jpaa.2004.10.003Suche in Google Scholar

[17] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), no. 1, 175–188. 10.1007/s00222-005-0474-8Suche in Google Scholar

[18] I. Heckenberger, Examples of finite-dimensional rank 2 Nichols algebras of diagonal type, Compos. Math. 143 (2007), no. 1, 165–190. 10.1112/S0010437X06002430Suche in Google Scholar

[19] I. Heckenberger, Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11 (2008), no. 2, 115–132. 10.1007/s10468-007-9060-7Suche in Google Scholar

[20] I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009), no. 1, 59–124. 10.1016/j.aim.2008.08.005Suche in Google Scholar

[21] H.-L. Huang, Quiver approaches to quasi-Hopf algebras, J. Math. Phys. 50 (2009), no. 4, Article ID 043501. 10.1063/1.3103569Suche in Google Scholar

[22] H.-L. Huang, From projective representations to quasi-quantum groups, Sci. China Math. 55 (2012), no. 10, 2067–2080. 10.1007/s11425-012-4437-4Suche in Google Scholar

[23] H.-L. Huang, G. Liu, Y. Yang and Y. Ye, Finite quasi-quantum groups of rank two, preprint (2015), https://arxiv.org/abs/1508.04248. 10.1090/btran/79Suche in Google Scholar

[24] H.-L. Huang, G. Liu and Y. Ye, Quivers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303 (2011), no. 3, 595–612. 10.1007/s00220-011-1229-6Suche in Google Scholar

[25] H.-L. Huang, G. Liu and Y. Ye, The braided monoidal structures on a class of linear Gr-categories, Algebr. Represent. Theory 17 (2014), no. 4, 1249–1265. 10.1007/s10468-013-9445-8Suche in Google Scholar

[26] G. Liu, F. Van Oystaeyen and Y. Zhang, Quasi-Frobenius–Lusztig kernels for simple Lie algebras, Trans. Amer. Math. Soc. 369 (2017), no. 3, 2049–2086. 10.1090/tran/6731Suche in Google Scholar

[27] S. Majid, Algebras and Hopf algebras in braided categories, Advances in Hopf algebras (Chicago 1992), Lecture Notes Pure Appl. Math. 158, Dekker, New York (1994), 55–105. 10.1201/9781003419792-4Suche in Google Scholar

[28] G. Mason and S.-H. Ng, Group cohomology and gauge equivalence of some twisted quantum doubles, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3465–3509. 10.1090/S0002-9947-01-02771-4Suche in Google Scholar

[29] S.-H. Ng, Non-commutative, non-cocommutative semisimple Hopf algebras arise from finite abelian groups, Groups, rings, Lie and Hopf algebras (St. John’s 2001), Math. Appl. 555, Kluwer Academic Publisher, Dordrecht (2003), 167–177. 10.1007/978-1-4613-0235-3_11Suche in Google Scholar

[30] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge 1994. 10.1017/CBO9781139644136Suche in Google Scholar

Received: 2017-01-26
Revised: 2017-08-01
Published Online: 2018-03-01
Published in Print: 2020-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2017-0058/html
Button zum nach oben scrollen