Abstract
In this note, we prove that on a compact Kähler manifold
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1510214
Funding statement: The author is partially supported by NSF Grant DMS-1510214.
Acknowledgements
I am grateful to Vincent Guedj who suggested this problem to me. Also, I would like to thank Song Sun for very insightful discussions about this paper.
References
[1] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log-Fano varieties, preprint (2011), http://arxiv.org/abs/1111.7158; J. reine angew. Math. (2016), DOI 10.1515/crelle-2016-0033. 10.1515/crelle-2016-0033Suche in Google Scholar
[2] R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. 10.1007/s10240-012-0046-6Suche in Google Scholar
[3] R. J. Berman and H. Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal. 24 (2014), no. 6, 1683–1730. 10.1007/s00039-014-0301-8Suche in Google Scholar
[4] F. Campana, H. Guenancia and M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 879–916. 10.24033/asens.2205Suche in Google Scholar
[5] S. Y. Cheng and S. T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. 10.1002/cpa.3160330404Suche in Google Scholar
[6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss. 224, Springer, Berlin 1977. 10.1007/978-3-642-96379-7Suche in Google Scholar
[7] H. Guenancia and M. Păun, Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors, J. Differential Geom. 103 (2016), no. 1, 15–57. 10.4310/jdg/1460463562Suche in Google Scholar
[8] T. Jeffres, R. Mazzeo and Y. A. Rubinstein, Kähler–Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. 10.4007/annals.2016.183.1.3Suche in Google Scholar
[9] R. Kobayashi, Kähler–Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984), no. 2, 399–418. Suche in Google Scholar
[10] J. Song and G. Tian, Canonical measures and Kähler–Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353. 10.1090/S0894-0347-2011-00717-0Suche in Google Scholar
[11] G. Tian and S. T. Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (San Diego 1986), Adv. Ser. Math. Phys. 1, World Sci. Publishing, Singapore (1987), 574–628. 10.1142/9789812798411_0028Suche in Google Scholar
[12] H. Tsuji, Canonical singular Hermitian metrics on relative canonical bundles, Amer. J. Math. 133 (2011), no. 6, 1469–1501. 10.1353/ajm.2011.0047Suche in Google Scholar
[13] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. 10.1002/cpa.3160280203Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Kähler–Einstein metrics: From cones to cusps
- Smoothness of definite unitary eigenvarieties at critical points
- Construction and classification of holomorphic vertex operator algebras
- A Frobenius–Nirenberg theorem with parameter
- On the homotopy classification of proper Fredholm maps into a Hilbert space
- Finite quasi-quantum groups of diagonal type
- Curvature estimates for stable free boundary minimal hypersurfaces
- Gabber’s presentation lemma for finite fields
- A new proof of the Tikuisis–White–Winter theorem
Artikel in diesem Heft
- Frontmatter
- Kähler–Einstein metrics: From cones to cusps
- Smoothness of definite unitary eigenvarieties at critical points
- Construction and classification of holomorphic vertex operator algebras
- A Frobenius–Nirenberg theorem with parameter
- On the homotopy classification of proper Fredholm maps into a Hilbert space
- Finite quasi-quantum groups of diagonal type
- Curvature estimates for stable free boundary minimal hypersurfaces
- Gabber’s presentation lemma for finite fields
- A new proof of the Tikuisis–White–Winter theorem