Abstract
Nous étudions l’anneau des fonctions rationnelles qui se prolongent
par continuité sur
We study the ring of rational functions admitting a continuous extension to the real affine space. We establish several properties of this ring. In particular, we prove a strong Nullstellensatz. We study the scheme theoretic properties and prove regulous versions of Theorems A and B of Cartan. We also give a geometrical characterization of prime ideals of this ring in terms of their zero-locus and relate them to euclidean closed Zariski-constructible sets.
Funding statement: Ce travail a bénéficié d’un support partiel provenant du contrat ANR BirPol ANR-11-JS01-004-01.
Acknowledgements
Nous remercions J. Kollár pour nous avoir transmis une version préliminaire de son article, ainsi que S. Cantat, M. Coste, L. Evain, W. Kucharz, K. Kurdyka, D. Naie et A. Parusiński pour l’intérêt précoce qu’ils ont porté à nos travaux et pour leurs suggestions qui ont contribué à améliorer ce texte. Merci aussi à F. Broglia et F. Acquistapace pour nous avoir signalé les références [2, 1]. La version finale de cet article doit beaucoup au referee dont la lecture attentive et les remarques ont été très constructives.
References
[1] A. Andreotti and E. Bombieri, Sugli omeomorfismi delle varietà algebriche, Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 431–450. Suche in Google Scholar
[2] A. Andreotti and F. Norguet, La convexité holomorphe dans l’espace analytique des cycles d’une variété algébrique, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 31–82. Suche in Google Scholar
[3] E. Bierstone and P. D. Milman, Arc-analytic functions, Invent. Math. 101 (1990), 411–424. 10.1007/BF01231509Suche in Google Scholar
[4] I. Biswas and J. Huisman, Rational real algebraic models of topological surfaces, Doc. Math. 12 (2007), 549–567. 10.4171/dm/234Suche in Google Scholar
[5] J. Blanc and F. Mangolte, Geometrically rational real conic bundles and very transitive actions, Compos. Math. 147 (2011), 161–187. 10.1112/S0010437X10004835Suche in Google Scholar
[6] J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin 1987. Suche in Google Scholar
[7] M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 30 (1983), 227–235. 10.1016/0022-4049(83)90058-0Suche in Google Scholar
[8] M. Coste and M. M. Diop, Real algebraic 1-cocycles are Nash coboundaries, Boll. Un. Mat. Ital. A (7) 6 (1992), no. 2, 249–254. Suche in Google Scholar
[9] C. N. Delzell, A continuous, constructive solution to Hilbert’s 17th problem, Invent. Math. 76 (1984), 365–384. 10.1007/BF01388465Suche in Google Scholar
[10] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I., Publ. Math. IHES 11 (1961). 10.1007/BF02684274Suche in Google Scholar
[11] A. Grothendieck and J. Dieudonné, EGA1, Le langage des schémas, Publ. Math. IHES 4 (1960). 10.1007/BF02684778Suche in Google Scholar
[12] J. Harris, Algebraic geometry, Grad. Texts in Math. 133, Springer, Berlin 1992. 10.1007/978-1-4757-2189-8Suche in Google Scholar
[13] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, Berlin 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar
[14] J. Huisman and F. Mangolte, The group of automorphisms of a real rational surface is n-transitive, Bull. London Math. Soc. 41 (2009), 563–568. 10.1112/blms/bdp033Suche in Google Scholar
[15] J. H. Hubbard, On the cohomology of Nash sheaves, Topology 11 (1972), 265–270. 10.1016/0040-9383(72)90013-4Suche in Google Scholar
[16] J. Kollár, Lectures on resolution of singularities, Princeton University Press, Princeton 2007. Suche in Google Scholar
[17] J. Kollár, Continuous rational functions on real and p-adic varieties, preprint (2011), https://arxiv.org/abs/1101.3737. 10.1007/s00209-014-1358-7Suche in Google Scholar
[18] J. Kollár and F. Mangolte, Cremona transformations and diffeomorphisms of surfaces, Adv. in Math. 222 (2009), 44–61. 10.1016/j.aim.2009.03.020Suche in Google Scholar
[19] J. Kollár and K. Nowak, Continuous rational functions on real and p-adic varieties II, preprint (2013), https://arxiv.org/abs/1301.5048. Suche in Google Scholar
[20] W. Kucharz, Rational maps in real algebraic geometry, Adv. Geom. 9 (2009), no. 4, 517–539. 10.1515/ADVGEOM.2009.024Suche in Google Scholar
[21] T.-C. Kuo, On classification of real singularities, Invent. Math. 82 (1985), 257–262. 10.1007/BF01388802Suche in Google Scholar
[22] K. Kurdyka, Ensemble semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), 445–462. 10.1007/BF01460044Suche in Google Scholar
[23] K. Kurdyka and A. Parusiński, Arc-symmetric sets and arc-analytic mappings, Arc spaces and additive invariants in real algebraic and analytic geometry, Panor. Synthèses 24, Société Mathématique de France, Paris (2007), 33–67. Suche in Google Scholar
[24] K. J. Nowak, On the Euler characteristic of the links of a set determined by smooth definable functions, Ann. Polon. Math. 93 (2008), no. 3, 231–246. 10.4064/ap93-3-4Suche in Google Scholar
[25] A. Parusiński, Topology of injective endomorphisms of real algebraic sets, Math. Ann. 328 (2004), no. 1–2, 353–372. 10.1007/s00208-003-0486-xSuche in Google Scholar
[26] W. Rudin, Principles of mathematical analysis, 3rd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, Düsseldorf 1976. Suche in Google Scholar
[27] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278. 10.1007/978-3-642-39816-2_29Suche in Google Scholar
[28] M. Spivak, Calculus, Publish or Perish, Houston 1984. Suche in Google Scholar
[29] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann. 207 (1974), 87–97. 10.1007/BF01362149Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Tight contact structures on the Brieskorn spheres -Σ(2,3,6n-1) and contact invariants
- Some examples of quasiisometries of nilpotent Lie groups
- Spans of special cycles of codimension less than 5
- The braided Thompson's groups are of type F∞
- Fonctions régulues
- A Dixmier--Douady theory for strongly self-absorbing C*-algebras
- Monodromy of A-hypergeometric functions
- Primitive ideals, twisting functors and star actions for classical Lie superalgebras
Artikel in diesem Heft
- Frontmatter
- Tight contact structures on the Brieskorn spheres -Σ(2,3,6n-1) and contact invariants
- Some examples of quasiisometries of nilpotent Lie groups
- Spans of special cycles of codimension less than 5
- The braided Thompson's groups are of type F∞
- Fonctions régulues
- A Dixmier--Douady theory for strongly self-absorbing C*-algebras
- Monodromy of A-hypergeometric functions
- Primitive ideals, twisting functors and star actions for classical Lie superalgebras