Home Monodromy of A-hypergeometric functions
Article
Licensed
Unlicensed Requires Authentication

Monodromy of A-hypergeometric functions

  • Frits Beukers EMAIL logo
Published/Copyright: July 19, 2014

Abstract

Using Mellin–Barnes integrals we give a method to compute elements of the monodromy group of an A-hypergeometric system of differential equations. The method works under the assumption that the A-hypergeometric system has a basis of solutions consisting of Mellin–Barnes integrals. Hopefully these elements generate the full monodromy group, but this has only been verified in some special cases.

A Appendix

We reproduce the six matrices obtained from the monodromy calculation of Appell F2:

G1=(00100001-(1+c)/ab)c/ab1/b+1/a+c/a-c/a-1/ab01/a1/b),
G2=(00100001-b/ab-1/cb/c1+b/a+1/cb(-1+1/b-1/c)-1/ab01/a1/b),
G3=(00100001-1/c01+1/c00-1/c01+1/c),
G4=(0100-b/ab-1/c1+b/a+1/cb/cb(-1+1/b-1/c)0001-1/ab1/a01/b),
G5=(0100-1/c1+1/c00000100-1/c1+1/c)
G6=(0100-(1+c)/ab1/b+1/a+c/ac/ab-c/a0001-1/ab1/a01/b).

Now let g1,g2,g3,g4,g5 be the monodromy matrices defined in [20, formulas (2.7)–(2.11)] where our symbols a,b,b,c,c are Kato’s symbols e(a),e(b),e(b),e(c),e(c). Define the conjugation matrix

S=(-1cc-cc-11c-c-1c1-c-111-1).

Then the relations between the Gi and gj are given by

G1=S-1g2g3g5S,G2=S-1g2g5S,G3=S-1g2S,
G4=S-1g1g4S,G5=S-1g1S,G6=S-1g1g3g4S.

From these relations it follows that the group we computed and the group computed in [20] are conjugate.

Acknowledgements

Many thanks to the referees whose detailed and important remarks have improved the presentation of the paper significantly.

References

[1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269–290. 10.1215/S0012-7094-94-07313-4Search in Google Scholar

[2] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl. 71, Cambridge University Press, Cambridge 1999. 10.1017/CBO9781107325937Search in Google Scholar

[3] I. A. Antipova, Inversion of multidimensional Mellin transforms, Russian Math. Surveys 62 (2007), 977–979. 10.1070/RM2007v062n05ABEH004459Search in Google Scholar

[4] I. A. Antipova, Inversion of many-dimensional Mellin transforms and solutions of algebraic equations, Sb. Math. 198 (2007), 474–463. 10.1070/SM2007v198n04ABEH003844Search in Google Scholar

[5] F. Beukers, Algebraic A-hypergeometric functions, Invent. Math. 180 (2010), 589–610. 10.1007/s00222-010-0238-ySearch in Google Scholar

[6] F. Beukers, Irreducibility of A-hypergeometric systems, Indag. Math. (N.S.) 21 (2011), 30–39. 10.1016/j.indag.2010.12.002Search in Google Scholar

[7] F. Beukers, Notes on A-hypergeometric functions, Arithmetic and Galois theories of differential equations, Sémin. Congr. 23, Société Mathématique de France, Paris (2011), 25–61. 10.1007/978-3-7643-8284-1_2Search in Google Scholar

[8] F. Beukers and G. Heckman, Monodromy for the hypergeometric function  nFn-1, Invent. Math. 95 (1989), 325–354. 10.1007/BF01393900Search in Google Scholar

[9] Y.-H. Chen, Y. Yang and N. Yui, Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds, J. reine angew. Math. 616 (2008), 167–203. 10.1515/CRELLE.2008.021Search in Google Scholar

[10] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5–89. 10.1007/BF02831622Search in Google Scholar

[11] I. M. Gelfand, M. I. Graev, A. V. Zelevinsky, Holonomic systems of equations and series of hypergeometric type (in Russian), Dokl. Akad. Nauk SSSR 295 (1987), 14–19. Search in Google Scholar

[12] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math 84 (1990), 255–271. 10.1016/0001-8708(90)90048-RSearch in Google Scholar

[13] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, A correction to the paper “Hypergeometric equations and toral manifolds”, Funct. Anal. Appl. 27 (1993), 295–295. 10.1007/BF01078854Search in Google Scholar

[14] I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov, Equations of hypergeometric type and Newton polytopes (in Russian), Dokl. Akad. Nauk SSSR 300 (1988), 529–534. Search in Google Scholar

[15] I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov, Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94–106. 10.1007/BF01078777Search in Google Scholar

[16] Y. Goto, The monodromy representation of Lauricella’s hypergeometric function FC, preprint (2014), https://arxiv.org/abs/1403.1654. Search in Google Scholar

[17] M. Hanamura and M. Yoshida, Hodge structure on twisted cohomologies and twisted Riemann inequalities I, Nagoya Math. J. 154 (1999), 123–139. 10.1017/S0027763000025344Search in Google Scholar

[18] Y. Haraoka and Y. Ueno, Rigidity for Appell’s hypergeometric series F4, Funkcial. Ekvac. 51 (2008), 149–164. 10.1619/fesi.51.149Search in Google Scholar

[19] J. Kaneko, Monodromy group of Appell’s system F4, Tokyo J. Math 4 (1981), 35–54. 10.3836/tjm/1270215739Search in Google Scholar

[20] M. Kato, Appell’s hypergeometric systems F2 with finite irreducible monodromy groups, Kyushu J. Math. 54 (2000), 279–305. 10.2206/kyushujm.54.279Search in Google Scholar

[21] M. Kita and M. Yoshida, Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287–304; Intersection theory for twisted cycles II, Math. Nachr. 168 (1994), 171–190. 10.1002/mana.19941660122Search in Google Scholar

[22] N. W. Maclachlan, Complex variable theory and transform calculus, 2nd ed., Cambridge University Press, Cambridge 1953. Search in Google Scholar

[23] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hypergeometric equation of type (3,6). I, Duke Math. J. 71 (1993), 403–426. 10.1215/S0012-7094-93-07116-5Search in Google Scholar

[24] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hypergeometric equation of type (3,6). II: The unitary reflection group of order 293757, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 20 (1993), 617–631. Search in Google Scholar

[25] K. Matsumoto and M. Yoshida, Monodromy of Lauricella’s hypergeometric FA-system, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 551–577. 10.2422/2036-2145.201110_010Search in Google Scholar

[26] K. Mimachi, Intersection numbers for twisted cycles and the connection problem associated with the generalized hypergeometric function  n+1Fn, Int. Math. Res. Not. IMRN 2011 (2011), 1757–1781. 10.1093/imrn/rnq131Search in Google Scholar

[27] L. Nilsson, Amoebas, discriminants, and hypergeometric functions, PhD dissertation, Stockholm University 2009. Search in Google Scholar

[28] N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), 289–349. 10.1007/BF02392494Search in Google Scholar

[29] E. Picard, Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. Éc. Norm. Supér. (2) 10 (1881), 304–322. 10.24033/asens.203Search in Google Scholar

[30] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math. 6, Springer-Verlag, Berlin 2000. 10.1007/978-3-662-04112-3Search in Google Scholar

[31] T. Sasaki, On the finiteness of the monodromy group of the system of hypergeometric differential equations (FD), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 565–573. Search in Google Scholar

[32] M. Schulze and U. Walther, Resonance equals reducibility for A-hypergeometric systems, Algebra Number Theory 6 (2012), 527–537. 10.2140/ant.2012.6.527Search in Google Scholar

[33] F. C. Smith, Relations among the fundamental solutions of the generalized hypergeometric equation when p=q+1. Non-logarithmic cases, Bull. Amer. Math. Soc. 44 (1938), 429–433. 10.1090/S0002-9904-1938-06776-6Search in Google Scholar

[34] J. Stienstra, GKZ hypergeometric structures, Arithmetic and geometry around hypergeometric functions, Progr. Math. 260, Birkhäuser-Verlag, Basel (2007), 313–371. 10.1007/978-3-7643-8284-1_12Search in Google Scholar

[35] K. Takano, Monodromy of the system for Appell’s F4, Funkcial. Ekvac. 23 (1980), 97–122. Search in Google Scholar

[36] T. Terada, Fonctions hypergéométriques F1 et fonctions automorphes I, J. Math. Soc. Japan 35 (1983), 451–475. 10.2969/jmsj/03530451Search in Google Scholar

[37] M. Yoshida, Hypergeometric functions, my love. Modular interpretations of configuration spaces, Aspects Math. 32, Vieweg-Verlag, Wiesbaden 1997. 10.1007/978-3-322-90166-8Search in Google Scholar

[38] O. N. Zhdanov and A. K. Tsikh, Studying the multiple Mellin–Barnes integrals by means of multidimensional residues, Sib. Math. J. 39 (1998), 245–260. 10.1007/BF02677509Search in Google Scholar

Received: 2013-06-26
Revised: 2014-03-11
Published Online: 2014-07-19
Published in Print: 2016-09-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0054/html
Scroll to top button