Abstract
Using Mellin–Barnes integrals we give a method to compute elements of the monodromy group of an A-hypergeometric system of differential equations. The method works under the assumption that the A-hypergeometric system has a basis of solutions consisting of Mellin–Barnes integrals. Hopefully these elements generate the full monodromy group, but this has only been verified in some special cases.
A Appendix
We reproduce the six matrices obtained from the monodromy calculation of
Appell
Now let
Then the relations between the
From these relations it follows that the group we computed and the group computed in [20] are conjugate.
Acknowledgements
Many thanks to the referees whose detailed and important remarks have improved the presentation of the paper significantly.
References
[1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269–290. 10.1215/S0012-7094-94-07313-4Search in Google Scholar
[2] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl. 71, Cambridge University Press, Cambridge 1999. 10.1017/CBO9781107325937Search in Google Scholar
[3] I. A. Antipova, Inversion of multidimensional Mellin transforms, Russian Math. Surveys 62 (2007), 977–979. 10.1070/RM2007v062n05ABEH004459Search in Google Scholar
[4] I. A. Antipova, Inversion of many-dimensional Mellin transforms and solutions of algebraic equations, Sb. Math. 198 (2007), 474–463. 10.1070/SM2007v198n04ABEH003844Search in Google Scholar
[5] F. Beukers, Algebraic A-hypergeometric functions, Invent. Math. 180 (2010), 589–610. 10.1007/s00222-010-0238-ySearch in Google Scholar
[6] F. Beukers, Irreducibility of A-hypergeometric systems, Indag. Math. (N.S.) 21 (2011), 30–39. 10.1016/j.indag.2010.12.002Search in Google Scholar
[7] F. Beukers, Notes on A-hypergeometric functions, Arithmetic and Galois theories of differential equations, Sémin. Congr. 23, Société Mathématique de France, Paris (2011), 25–61. 10.1007/978-3-7643-8284-1_2Search in Google Scholar
[8]
F. Beukers and G. Heckman,
Monodromy for the hypergeometric function
[9] Y.-H. Chen, Y. Yang and N. Yui, Monodromy of Picard–Fuchs differential equations for Calabi–Yau threefolds, J. reine angew. Math. 616 (2008), 167–203. 10.1515/CRELLE.2008.021Search in Google Scholar
[10] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. Inst. Hautes Études Sci. 63 (1986), 5–89. 10.1007/BF02831622Search in Google Scholar
[11] I. M. Gelfand, M. I. Graev, A. V. Zelevinsky, Holonomic systems of equations and series of hypergeometric type (in Russian), Dokl. Akad. Nauk SSSR 295 (1987), 14–19. Search in Google Scholar
[12] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math 84 (1990), 255–271. 10.1016/0001-8708(90)90048-RSearch in Google Scholar
[13] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, A correction to the paper “Hypergeometric equations and toral manifolds”, Funct. Anal. Appl. 27 (1993), 295–295. 10.1007/BF01078854Search in Google Scholar
[14] I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov, Equations of hypergeometric type and Newton polytopes (in Russian), Dokl. Akad. Nauk SSSR 300 (1988), 529–534. Search in Google Scholar
[15] I. M. Gelfand, A. V. Zelevinsky and M. M. Kapranov, Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94–106. 10.1007/BF01078777Search in Google Scholar
[16]
Y. Goto,
The monodromy representation of Lauricella’s hypergeometric function
[17] M. Hanamura and M. Yoshida, Hodge structure on twisted cohomologies and twisted Riemann inequalities I, Nagoya Math. J. 154 (1999), 123–139. 10.1017/S0027763000025344Search in Google Scholar
[18]
Y. Haraoka and Y. Ueno,
Rigidity for Appell’s hypergeometric series
[19]
J. Kaneko,
Monodromy group of Appell’s system
[20]
M. Kato,
Appell’s hypergeometric systems
[21] M. Kita and M. Yoshida, Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287–304; Intersection theory for twisted cycles II, Math. Nachr. 168 (1994), 171–190. 10.1002/mana.19941660122Search in Google Scholar
[22] N. W. Maclachlan, Complex variable theory and transform calculus, 2nd ed., Cambridge University Press, Cambridge 1953. Search in Google Scholar
[23]
K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida,
Monodromy of the hypergeometric equation of type
[24]
K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida,
Monodromy of the hypergeometric equation of type
[25]
K. Matsumoto and M. Yoshida,
Monodromy of Lauricella’s hypergeometric
[26]
K. Mimachi,
Intersection numbers for twisted cycles and the connection problem associated with the generalized hypergeometric function
[27] L. Nilsson, Amoebas, discriminants, and hypergeometric functions, PhD dissertation, Stockholm University 2009. Search in Google Scholar
[28] N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), 289–349. 10.1007/BF02392494Search in Google Scholar
[29] E. Picard, Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. Éc. Norm. Supér. (2) 10 (1881), 304–322. 10.24033/asens.203Search in Google Scholar
[30] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math. 6, Springer-Verlag, Berlin 2000. 10.1007/978-3-662-04112-3Search in Google Scholar
[31]
T. Sasaki,
On the finiteness of the monodromy group of the system of hypergeometric differential equations
[32] M. Schulze and U. Walther, Resonance equals reducibility for A-hypergeometric systems, Algebra Number Theory 6 (2012), 527–537. 10.2140/ant.2012.6.527Search in Google Scholar
[33]
F. C. Smith,
Relations among the fundamental solutions of the generalized hypergeometric equation when
[34] J. Stienstra, GKZ hypergeometric structures, Arithmetic and geometry around hypergeometric functions, Progr. Math. 260, Birkhäuser-Verlag, Basel (2007), 313–371. 10.1007/978-3-7643-8284-1_12Search in Google Scholar
[35]
K. Takano,
Monodromy of the system for Appell’s
[36] T. Terada, Fonctions hypergéométriques F1 et fonctions automorphes I, J. Math. Soc. Japan 35 (1983), 451–475. 10.2969/jmsj/03530451Search in Google Scholar
[37] M. Yoshida, Hypergeometric functions, my love. Modular interpretations of configuration spaces, Aspects Math. 32, Vieweg-Verlag, Wiesbaden 1997. 10.1007/978-3-322-90166-8Search in Google Scholar
[38] O. N. Zhdanov and A. K. Tsikh, Studying the multiple Mellin–Barnes integrals by means of multidimensional residues, Sib. Math. J. 39 (1998), 245–260. 10.1007/BF02677509Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Tight contact structures on the Brieskorn spheres -Σ(2,3,6n-1) and contact invariants
- Some examples of quasiisometries of nilpotent Lie groups
- Spans of special cycles of codimension less than 5
- The braided Thompson's groups are of type F∞
- Fonctions régulues
- A Dixmier--Douady theory for strongly self-absorbing C*-algebras
- Monodromy of A-hypergeometric functions
- Primitive ideals, twisting functors and star actions for classical Lie superalgebras
Articles in the same Issue
- Frontmatter
- Tight contact structures on the Brieskorn spheres -Σ(2,3,6n-1) and contact invariants
- Some examples of quasiisometries of nilpotent Lie groups
- Spans of special cycles of codimension less than 5
- The braided Thompson's groups are of type F∞
- Fonctions régulues
- A Dixmier--Douady theory for strongly self-absorbing C*-algebras
- Monodromy of A-hypergeometric functions
- Primitive ideals, twisting functors and star actions for classical Lie superalgebras