Startseite Mathematik Convergence Rates for a Finite Volume Scheme of the Stochastic Heat Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convergence Rates for a Finite Volume Scheme of the Stochastic Heat Equation

  • Niklas Sapountzoglou ORCID logo EMAIL logo und Aleksandra Zimmermann ORCID logo
Veröffentlicht/Copyright: 9. Juli 2025

Abstract

In this contribution, we provide convergence rates for a finite volume scheme of the stochastic heat equation with multiplicative Lipschitz noise and homogeneous Neumann boundary conditions (SHE). More precisely, we give an error estimate for the L 2 -norm of the space-time discretization of SHE by a semi-implicit Euler scheme with respect to time and a TPFA scheme with respect to space and the variational solution of SHE. The only regularity assumptions additionally needed is spatial regularity of the initial datum and smoothness of the diffusive term.

MSC 2020: 60H15; 35K05; 65M08

A Appendix

Lemma A.1.

Let d { 2 , 3 } . Then, for any u H 2 ( Λ ) satisfying the weak homogeneous Neumann boundary condition we have

u H 2 ( Λ ) 2 12 ( Δ u 2 2 + u 2 2 ) ,

where Δ denotes the Laplace operator on H 1 ( Λ ) associated with the weak formulation of the homogeneous Neumann boundary condition. Especially, for any random variable u : Ω H 2 ( Λ ) we obtain

u H 2 ( Λ ) 2 12 ( Δ u 2 2 + u 2 2 ) -a.s. in  Ω .

Proof.

Let u H 2 ( Λ ) satisfying the weak homogeneous Neumann boundary conditions. We set

f := - Δ u + u L 2 ( Λ ) .

Then, according to [23, Theorem 3.2.1.3], u is the unique solution of - Δ u + u = f satisfying the weak homogeneous Neumann boundary conditions. Now, we follow the ideas of the proof of [23, Theorem 3.2.1.3]. There exists a sequence ( Λ m ) m such that Λ m d is bounded, open, convex, Λ Λ m , dist ( Λ , Λ m ) 0 as m and Λ m has a 𝒞 2 -boundary for any m . We set

f ~ := { f in  Λ , 0 in  d Λ .

Then, since f ~ L 2 ( Λ m ) for any m , there exists a unique u m H 2 ( Λ m ) satisfying the weak homogeneous Neumann boundary conditions with respect to Λ m such that - Δ u m + u m = f ~ in Λ m . According to the proof of [23, Theorem 3.2.1.3] there exists C > 0 such that u m H 2 ( Λ m ) C for any m and ( u m ) | Λ u in H 2 ( Λ ) for a subsequence. Now, [23, Theorem 3.1.2.3] yields

u m H 2 ( Λ m ) 6 - Δ u m + u m L 2 ( Λ m ) .

Hence, we obtain

u H 2 ( Λ ) lim inf m u m H 2 ( Λ )
lim inf m u m H 2 ( Λ m )
lim inf m 6 - Δ u m + u m L 2 ( Λ m )
= lim inf m 6 f ~ L 2 ( Λ m )
= 6 f L 2 ( Λ )
= 6 - Δ u + u L 2 ( Λ )
6 ( Δ u L 2 ( Λ ) + u L 2 ( Λ ) )

and therefore we may conclude

u H 2 ( Λ ) 2 6 ( Δ u L 2 ( Λ ) + u L 2 ( Λ ) ) 2 12 ( Δ u L 2 ( Λ ) 2 + u L 2 ( Λ ) 2 ) .

Lemma A.2.

Let u H 2 ( Λ ) , T an admissible mesh, K T and y K . Then, for any 1 q 2 , there exists a constant C = C ( q , Λ ) > 0 such that

K | u ( x ) - u ( y ) | q 𝑑 x C h q u W 2 , q ( K ) q .

Especially, for any function v of the form v ( x ) := K T u ( y K ) 1 K ( x ) , where y K K and x Λ , we have

u - v L 2 ( Λ ) 2 C ( 2 , Λ ) h 2 u H 2 ( Λ ) 2 .

Proof.

Let x , y K . Then we have

u ( x ) - u ( y ) = u ( x ) ( x - y ) + 0 1 ( 1 - s ) ( D 2 ( u ) ( ( 1 - s ) y + s x ) ( x - y ) ) ( x - y ) 𝑑 s .

The Jensen inequality yields

K | u ( x ) - u ( y ) | q 𝑑 x 2 q - 1 K | u ( x ) ( x - y ) | q 𝑑 x + 2 q - 1 K 0 1 | ( 1 - s ) ( D 2 ( u ) ( ( 1 - s ) y + s x ) ( x - y ) ) ( x - y ) | q 𝑑 s 𝑑 x .

Now, a change of variables z := ( 1 - s ) y + s x yields

K | u ( x ) - u ( y ) | q 𝑑 x 2 q - 1 h q u L q ( K ) q + 2 q - 1 h 2 q D 2 ( u ) L q ( K ) q C h q u W 2 , q ( K )

for C = C ( q , Λ ) = 2 q - 1 ( 1 + diam ( Λ ) q ) . ∎

Acknowledgements

The authors would like to thank Andreas Prohl for his valuable suggestions.

References

[1] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray–Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differential Equations 23 (2007), no. 1, 145–195. 10.1002/num.20170Suche in Google Scholar

[2] R. Anton, D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation, IMA J. Numer. Anal. 40 (2020), no. 1, 247–284. 10.1093/imanum/dry060Suche in Google Scholar

[3] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon and G. Vallet, A global existence and uniqueness result for a stochastic Allen–Cahn equation with constraint, Math. Methods Appl. Sci. 40 (2017), no. 14, 5241–5261. 10.1002/mma.4383Suche in Google Scholar

[4] C. Bauzet, V. Castel and J. Charrier, Existence and uniqueness result for an hyperbolic scalar conservation law with a stochastic force using a finite volume approximation, J. Hyperbolic Differ. Equ. 17 (2020), no. 2, 213–294. 10.1142/S0219891620500071Suche in Google Scholar

[5] C. Bauzet, J. Charrier and T. Gallouët, Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation, Math. Comp. 85 (2016), no. 302, 2777–2813. 10.1090/mcom/3084Suche in Google Scholar

[6] C. Bauzet, J. Charrier and T. Gallouët, Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 1, 150–223. 10.1007/s40072-015-0052-zSuche in Google Scholar

[7] C. Bauzet and F. Nabet, Convergence of a finite-volume scheme for a heat equation with a multiplicative stochastic force, Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples—FVCA, Springer Proc. Math. Stat. 323, Springer, Cham (2020), 275–283. 10.1007/978-3-030-43651-3_24Suche in Google Scholar

[8] C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise, ESAIM Math. Model. Numer. Anal. 57 (2023), no. 2, 745–783. 10.1051/m2an/2022087Suche in Google Scholar

[9] C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Finite volume approximations for non-linear parabolic problems with stochastic forcing, Finite Volumes for Complex Applications X. Vol. 1. Elliptic and Parabolic Problems, Springer Proc. Math. Stat. 432, Springer, Cham (2023), 157–166. 10.1007/978-3-031-40864-9_10Suche in Google Scholar

[10] C. Bauzet, K. Schmitz and A. Zimmermann, On a finite-volume approximation of a diffusion-convection equation with a multiplicative stochastic force, preprint (2023), https://arxiv.org/abs/2304.02259. Suche in Google Scholar

[11] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal. 35 (2015), no. 3, 1125–1149. 10.1093/imanum/dru032Suche in Google Scholar

[12] D. Breit, M. Hofmanová and S. Loisel, Space-time approximation of stochastic p-Laplace-type systems, SIAM J. Numer. Anal. 59 (2021), no. 4, 2218–2236. 10.1137/20M1334310Suche in Google Scholar

[13] D. Breit and A. Prohl, Error analysis for 2D stochastic Navier–Stokes equations in bounded domains with Dirichlet data, Found. Comput. Math. 24 (2024), no. 5, 1643–1672. 10.1007/s10208-023-09621-ySuche in Google Scholar

[14] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. 10.1007/978-0-387-70914-7Suche in Google Scholar

[15] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 493–516. 10.1051/m2an:1999149Suche in Google Scholar

[16] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 152, Cambridge University, Cambridge, 2014. 10.1017/CBO9781107295513Suche in Google Scholar

[17] A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation, Math. Comp. 78 (2009), no. 266, 845–863. 10.1090/S0025-5718-08-02184-4Suche in Google Scholar

[18] L. Diening, M. Hofmanová and J. Wichmann, An averaged space-time discretization of the stochastic p-Laplace system, Numer. Math. 153 (2023), no. 2–3, 557–609. 10.1007/s00211-022-01343-7Suche in Google Scholar

[19] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math. 105 (2006), no. 1, 35–71. 10.1007/s00211-006-0034-1Suche in Google Scholar

[20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Solution of Equations in n , Handb. Numer. Anal. 7, North-Holland, Amsterdam (2000), 713–1020. 10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[21] R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal. 26 (2006), no. 2, 326–353. 10.1093/imanum/dri036Suche in Google Scholar

[22] X. Feng and H. Qiu, Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise, J. Sci. Comput. 88 (2021), no. 2, Paper No. 31. 10.1007/s10915-021-01546-4Suche in Google Scholar

[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman, Boston, 1985. Suche in Google Scholar

[24] I. Gyöngy and A. Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99–134. 10.1007/s11118-004-5393-6Suche in Google Scholar

[25] I. Gyöngy and A. Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal. 30 (2009), no. 1, 29–64. 10.1007/s11118-008-9105-5Suche in Google Scholar

[26] U. Koley and G. Vallet, On the rate of convergence of a numerical scheme for fractional conservation laws with noise, IMA J. Numer. Anal. 44 (2024), no. 3, 1372–1405. 10.1093/imanum/drad015Suche in Google Scholar

[27] N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations, J. Soviet Math. 16 (1981), no. 4, 1233–1277. 10.1007/BF01084893Suche in Google Scholar

[28] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. 10.1007/978-3-319-22354-4Suche in Google Scholar

[29] A. K. Majee and A. Prohl, Optimal strong rates of convergence for a space-time discretization of the stochastic Allen–Cahn equation with multiplicative noise, Comput. Methods Appl. Math. 18 (2018), no. 2, 297–311. 10.1515/cmam-2017-0023Suche in Google Scholar

[30] F. Nabet, An error estimate for a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions, Numer. Math. 149 (2021), no. 1, 185–226. 10.1007/s00211-021-01230-7Suche in Google Scholar

[31] M. Ondreját, A. Prohl and N. J. Walkington, Numerical approximation of nonlinear SPDE’s, Stoch. Partial Differ. Equ. Anal. Comput. 11 (2023), no. 4, 1553–1634. 10.1007/s40072-022-00271-9Suche in Google Scholar

[32] É. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones, Phd thesis, University Paris Sud, 1975. Suche in Google Scholar

[33] N. Sapountzoglou, P. Wittbold and A. Zimmermann, On a doubly nonlinear PDE with stochastic perturbation, Stoch. Partial Differ. Equ. Anal. Comput. 7 (2019), no. 2, 297–330. 10.1007/s40072-018-0128-7Suche in Google Scholar

[34] S. Sugiyama, Stability problems on difference and functional-differential equations, Proc. Japan Acad. 45 (1969), 526–529. 10.3792/pja/1195520661Suche in Google Scholar

Received: 2024-06-04
Revised: 2025-03-25
Accepted: 2025-06-24
Published Online: 2025-07-09
Published in Print: 2025-10-01

© 2025 Institute of Mathematics of the National Academy of Science of Belarus, published by De Gruyter, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/cmam-2024-0089/html?lang=de
Button zum nach oben scrollen