Abstract
This paper aims to give a unified construction framework of meshless structure-preserving algorithms to solve the d-dimensional (
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11801277
Funding statement: Jialing Wang was supported by the National Natural Science Foundation of China (under Grant No. 11801277).
References
[1] S. Abbasbandy, H. Roohani Ghehsareh and I. Hashim, A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation, Eng. Anal. Bound. Elem. 37 (2013), no. 6, 885–898. 10.1016/j.enganabound.2013.03.006Suche in Google Scholar
[2] W. Bao and Y. Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2012), no. 2, 492–521. 10.1137/110830800Suche in Google Scholar
[3] W. Bao, S. Jin and P. A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys. 175 (2002), no. 2, 487–524. 10.1006/jcph.2001.6956Suche in Google Scholar
[4] Q. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys. 148 (1999), no. 2, 397–415. 10.1006/jcph.1998.6120Suche in Google Scholar
[5] M. Dehghan and D. Mirzaei, Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method, Internat. J. Numer. Methods Engrg. 76 (2008), no. 4, 501–520. 10.1002/nme.2338Suche in Google Scholar
[6] M. Dehghan and A. Shokri, A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions, Numer. Algorithms 52 (2009), no. 3, 461–477. 10.1007/s11075-009-9293-0Suche in Google Scholar
[7] Y. Duan and F. Rong, A numerical scheme for nonlinear Schrödinger equation by MQ quasi-interpolation, Eng. Anal. Bound. Elem. 37 (2013), no. 1, 89–94. 10.1016/j.enganabound.2012.08.006Suche in Google Scholar
[8] K. Feng and M. Z. Qin, The symplectic methods for the computation of Hamiltonian equations, Numerical Methods for Partial Differential Equations, Lecture Notes in Math. 1297, Springer, Berlin (1987), 1–37. 10.1007/BFb0078537Suche in Google Scholar
[9] W. Gao and Z. Wu, Approximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolant, Comput. Math. Appl. 69 (2015), no. 7, 696–707. 10.1016/j.camwa.2015.02.008Suche in Google Scholar
[10] Y. Gong, Q. Wang, Y. Wang and J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys. 328 (2017), 354–370. 10.1016/j.jcp.2016.10.022Suche in Google Scholar
[11] O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (1996), no. 5, 449–467. 10.1007/BF02440162Suche in Google Scholar
[12] A. Habibirad, E. Hesameddini and A. Taleei, An efficient meshless method for solving multi-dimensional nonlinear Schrödinger equation, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 3, 749–761. 10.1007/s40995-020-00864-wSuche in Google Scholar
[13] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd ed., Springer Ser. Comput. Math. 31, Springer, Berlin, 2006. Suche in Google Scholar
[14] O. Karakashian, G. D. Akrivis and V. A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 30 (1993), no. 2, 377–400. 10.1137/0730018Suche in Google Scholar
[15] L. Kong, Y. Wu, Z. Liu and P. Wang, Pointwise second order convergence of structure-preserving scheme for the triple-coupled nonlinear Schrödinger equations, Comput. Math. Appl. 154 (2024), 91–102. 10.1016/j.camwa.2023.11.002Suche in Google Scholar
[16] E. Larsson and B. Fornberg, A new class of energy-preserving numerical integration methods, J. Phys. 41 (2008), 1–7. Suche in Google Scholar
[17] C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), no. 264, 2141–2153. 10.1090/S0025-5718-08-02101-7Suche in Google Scholar
[18] L. Ma and Z. Wu, Approximation to the k-th derivatives by multiquadric quasi-interpolation method, J. Comput. Appl. Math. 231 (2009), no. 2, 925–932. 10.1016/j.cam.2009.05.017Suche in Google Scholar
[19] M. Mongillo, Choosing basis functions and shape parameters for radial basis function methods, SIAM Undergrad. Res. 4 (2011), no. 190–209, 2–6. 10.1137/11S010840Suche in Google Scholar
[20] G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A 41 (2008), no. 4, Article ID 045206. 10.1088/1751-8113/41/4/045206Suche in Google Scholar
[21] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math. 11 (1999), 193–210. 10.1023/A:1018975909870Suche in Google Scholar
[22] C. Stuart, R. Enns, S. Rangnekar and S. Sukhpal, Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation, Canad. J. Phys. 64 (1986), no. 311, 311–315. 10.1139/p86-054Suche in Google Scholar
[23] C. Sun and J. Wang, Several difference schemes for nonlinear Schrödinger equation, J. Huaqiao Univ. 42 (2021), no. 4, 551–560. Suche in Google Scholar
[24] Z. Sun, A meshless symplectic method for two-dimensional nonlinear Schrödinger equations based on radial basis function approximation, Eng. Anal. Bound. Elem. 104 (2019), 1–7. 10.1016/j.enganabound.2019.03.014Suche in Google Scholar
[25] Z. Sun, A conservative scheme for two-dimensional Schrödinger equation based on multiquadric trigonometric quasi-interpolation approach, Appl. Math. Comput. 423 (2022), Article ID 126996. 10.1016/j.amc.2022.126996Suche in Google Scholar
[26] Z. Sun and W. Gao, A meshless scheme for Hamiltonian partial differential equations with conservation properties, Appl. Numer. Math. 119 (2017), 115–125. 10.1016/j.apnum.2017.04.005Suche in Google Scholar
[27] I. Talanov, Self focusing of wave beams in nonlinear media, Jetp Lett. 2 (1965), no. 55, 138–141. Suche in Google Scholar
[28] J. Wang, A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014), no. 2, 390–407. 10.1007/s10915-013-9799-4Suche in Google Scholar
[29] T. Wang, J. Wang and B. Guo, Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation, J. Comput. Phys. 404 (2020), Article ID 109116. 10.1016/j.jcp.2019.109116Suche in Google Scholar
[30]
T. Wang and X. Zhao,
Unconditional
[31] Y. Wang, B. Wang and M. Qin, Local structure-preserving algorithms for partial differential equations, Sci. China Ser. A 51 (2008), no. 11, 2115–2136. 10.1007/s11425-008-0046-7Suche in Google Scholar
[32] G. Whitham and G. Fowler, Linear and nonlinear waves, Amer. Inst. Phys. 6 (1975), no. 55, 55–56. 10.1063/1.3069011Suche in Google Scholar
[33] Z. Wu and S. Zhang, Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations, Eng. Anal. Bound. Elem. 37 (2013), no. 7–8, 1052–1058. 10.1016/j.enganabound.2013.04.011Suche in Google Scholar
[34] Z. M. Wu, Radial basis functions in scattered data interpolation and the meshless method of numerical solution of PDEs, Gongcheng Shuxue Xuebao 19 (2002), no. 2, 1–12. Suche in Google Scholar
[35] Z. M. Wu and J. P. Liu, Generalized Strang-Fix condition for scattered data quasi-interpolation, Adv. Comput. Math. 23 (2005), no. 1–2, 201–214. 10.1007/s10444-004-1832-6Suche in Google Scholar
[36] Z. M. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. 10.1093/imanum/13.1.13Suche in Google Scholar
[37] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys. 205 (2005), no. 1, 72–97. 10.1016/j.jcp.2004.11.001Suche in Google Scholar
[38] Y. Zhang, W. Bao and H. Li, Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation, Phys. D 234 (2007), no. 1, 49–69. 10.1016/j.physd.2007.06.026Suche in Google Scholar
[39] G. Zhong and J. E. Marsden, Lie–Poisson Hamilton–Jacobi theory and Lie–Poisson integrators, Phys. Lett. A 133 (1988), no. 3, 134–139. 10.1016/0375-9601(88)90773-6Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston