Startseite A corpus-based study of the Chinese synonymous approximatives shangxia, qianhou and zuoyou
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A corpus-based study of the Chinese synonymous approximatives shangxia, qianhou and zuoyou

  • Shuqiong Wu

    Shuqiong Wu is Professor of linguistics in Sichuan International Studies University in China. Her research interests are cognitive linguistics, corpus linguistics and lexical semantics. Her present research focuses on exploring how antonymy (opposition) plays a part in language and thought based on corpus- and experimental data.

    EMAIL logo
Veröffentlicht/Copyright: 1. November 2018

Abstract

The Chinese antonymous compounds shangxia ‘up-down’, qianhou ‘front-back’ and zuoyou ‘left-right’ can convey similar meanings as approximatives, indicating ‘about’ or ‘around’. Based on data from the CCL (Centre for Chinese Linguistics) corpus and adopting a behavioral profile (BP) approach, this study investigates the semantic and usage differences between the three approximatives. The corpus analysis yields the following findings. First, the most frequently used of the three approximatives is zuoyou, followed by qianhou and shangxia, in that order. Second, qianhou mainly approximates time; zuoyou approximates quantity; and shangxia, age. Third, in approximating age, time and quantity, the three approximatives exhibit subtle behavioral preferences. Based on these corpus findings, I discuss the motivations underlying the similarities and differences between the three synonyms. I argue that their similarities are explained by the metaphor QUANTIFICATION IS SPACE and their differences are explained by the different kinds of quantification they are used to approximate.

Funding statement: This work was supported by the National Social Science Fund of China (Grant number: 18XYY003).

About the author

Shuqiong Wu

Shuqiong Wu is Professor of linguistics in Sichuan International Studies University in China. Her research interests are cognitive linguistics, corpus linguistics and lexical semantics. Her present research focuses on exploring how antonymy (opposition) plays a part in language and thought based on corpus- and experimental data.

Appendix

Table 6:

Items modified most frequently by the three approximatives.

qianhou ‘front-back’ shangxia ‘up-down’ zuoyou ‘left-right’
by frequency by log-likelihood by frequency by log-likelihood by frequency by log-likelihood
nian 1172 nian 5083.5000 sui 250 sui 1617.4375 % 10048 % 61732.0000
jie 742 jie 4556.0000 yuan 171 yuan 1005.7500 Yuan 5312 Yuan 29024.0000
ri 357 ri 1492.0000 shi 103 % 571.5000 shi 2889 mi 11936.0000
zhan 106 dan 444.0000 % 95 shi 349.8125 nian 2589 sui 9804.0000
dai 91 fang 376.0000 jin 31 dun 184.0000 mi 2239 shi 8868.0000
ci 89 Zhan 356.5000 dun 30 jin 167.7500 fen 2201 fen 8188.0000
fang 85 ci 351.0000 mi 27 mi 140.1250 sui 1650 nian 6496.0000
yue 81 ming 294.0000 du 20 du 65.6875 ren 1483 dun 6244.0000
dan 78 dai 263.0000 ren 19 1 59.8750 Dian 1162 zhong 5648.0000
ming 71 ji 236.5000 wan 17 dian 54.4375 dun 1150 dian 4364.0000
ji 67 Zheng 211.5000 dian 15 zi 46.3750 zhong 953 ban 3728.0000
ming 67 wu 201.5000 0 12 5 26.8750 ban 855 jin 3340.0000
zheng 57 Ming 179.0000 zi 11 0 23.0625 jin 697 ren 3324.0000
wu 54 yi 169.5000 fen 9 bang 22.8125 li 680 li 2396.0000
guo 47 di 167.5000 tou 7 wan 22.0000 wan 621 1 2120.0000
fen 46 0 166.0000 li 6 bi 20.1875 du 589 2 2056.0000
li 46 9 149.5000 nian 6 fen 19.1250 tian 563 bei 2032.0000
si 46 5 141.0000 qian 5 bei 18.3750 ge 519 0 1792.0000
yi 46 li 141.0000 wei 5 ren 17.1250 yue 478 mu 1592.0000
jian 40 jian 140.0000 yi 5 zhang 16.3750 bei 380 du 1428.0000
Table 7:

Semantic categories of the top 53 items modified by the three approximatives.

Age sui ‘year of age’, shi ‘ten’, ling ‘0’
Time Time period: fen ‘minute’, nian ‘year’, yue ‘month’, shihour’, zhong ‘minute’, ban ‘half an hour’, tian ‘day’, ri ‘day’, dai ‘times’, yuandan ‘new year’, shiji ‘century’, wu ‘noon’, jie ‘festival’, 0, 1, 5, 9 Time point: jiefang ‘liberation’, gemin ‘revolution’, zhanzheng ‘war’, dazhan ‘war’, jianguo ‘establishing a country’, jianli ‘set-up’, wusi ‘May Fourth Movement’, huiyi ‘conference’, shijian ‘event’, ci ‘this’, dian ‘clock’, fen ‘minute’, nian ‘year’, zhong ‘o’clock’, di ‘end’, 0, 1, 5,9
Quantity Number: shi ‘ten’, qian ‘ten thousand’, wan ‘a hundred thousand’, yi ‘a hundred million’, bei ‘times’, dian ‘point’, %, 0, 1, 2, 5, 9
Money: fen ‘penny’, bang ‘pound’, bi ‘RMB’, yuan ‘CNY’
Weight: jin ‘1/2 kilogram’, dun ‘ton’
Distance: mi ‘meter’, li ‘500 meters’, zhang ‘31/3 meters’
Temperature: du ‘degree’
Area: mu ‘0.0667 hectares
Person: ren ‘person’
Others: zi ‘word’, wei ‘rank’, ge ‘GE’, tou ‘head’
  1. Notes: The items total more than 53 because some are polysemic, which can indicate age, time, or quantity in different tokens.

Table 8:

HCFA test results of the distribution of the items modified most frequently by the three approximatives.

Approximatives Type Freq Exp Cont.chisq Obs-exp P.adj.bin Dec Q
zuoyou quantity 25,592 23,440.7253 197.4334 > 3.1619022730464e-95 *** 0.092
zuoyou time 12,018 14,002.6048 281.2803 < 2.29994971649504e-92 *** 0.067
qianhou time 3554 1272.1872 4092.6914 > 0 *** 0.054
qianhou quantity 0 2129.6746 2129.6746 < 0 *** 0.051
shangxia age 360 41.192 2467.434 > 7.83396813355248e-220 *** 0.007
shangxia time 9 306.208 288.4725 < 1.39109339516362e-121 *** 0.007
zuoyou age 1717 1883.6698 14.7472 < 1.73437237846597e-05 *** 0.004
qianhou age 19 171.1382 135.2476 < 1.41558149836509e-47 *** 0.003
shangxia quantity 491 512.6001 0.9102 < 1.00906662378127 ns 0
Table 9:

HCFA test results of the distribution of the time-denoting expressions modified by the three approximatives.

Approximatives Type Freq Exp Cont.chisq Obs-exp P.adj.bin Dec Q
zuoyou time point 6698 7862.106 172.3638 < 2.55723173242394e-77 *** 0.148
zuoyou time period 5320 4155.894 326.0773 > 2.90188372943334e-93 *** 0.102
qianhou time point 3494 2325.0062 587.7604 > 3.94761675358897e-135 *** 0.088
qianhou time period 60 1228.9938 1111.923 < 0 *** 0.081
shangxia time period 8 3.1123 7.6759 > 0.0870386717576094  ns 0
shangxia time point 1 5.8877 4.0575 < 0.114516783419691 ns 0
Table 10:

HCFA test results of the distribution of the quantity-denoting expressions modified by zuoyou and shangxia.

Approximatives Type Freq Exp Cont.chisq Obs-exp P.adj.bin Dec Q
zuoyou number 11,991 11,513.0907 19.8381 > 2.20598084583659e-08 *** 0.033
zuoyou other 860 29.1799 23,655.3942 > 0 *** 0.032
zuoyou money 5558 5437.9489 2.6503 > 0.551473346232273 ns 0.006
zuoyou distance 2930 2812.3725 4.9198 > 0.159784248367952 ** 0.005
shangxia money 177 107.9586 44.1532 > 1.04691725560168e-08 *** 0.003
shangxia number 151 228.5673 26.3235 < 4.18278183960324e-07 *** 0.003
zuoyou person 1483 1424.2021 2.4275 > 0.907843773 ns 0.002
zuoyou weight 1847 1809.1729 0.7909 > 2.901287482 ns 0.002
shangxia weight 61 35.9172 17.5166 > 0.00135753975128977 ** 0.001
shangxia distance 36 55.8335 7.0454 < 0.0488006530118535 * 0.001
zuoyou area 334 318.5965 0.7447 > 3.194440208 ns 0.001
shangxia temperature 20 11.4641 6.3556 > 0.222056039977209 ns 0
shangxia other 25 16.6597 4.1754 > 0.53471379858145 ns 0
shangxia person 19 28.2744 3.0421 < 0.68877376803781 ns 0
shangxia area 2 6.325 2.9574 < 0.782767943 ns 0
zuoyou temperature 589 577.4561 0.2308 > 5.106837195 ns 0
Table 11:

HCFA test results of the distribution of the age-denoting expressions modified by the three approximatives.

Approximatives Type Freq Exp Cont.chisq Obs-exp P.adj.bin Dec Q
zuoyou sui 1650 1351.646 65.8568 > 1.44823933420287e-44 *** 0.221
qianhou shi/ling 3 0.0272 343.3591 < 8.05128009331434e-159 *** 0.198
qianhou sui 16 0.145 318.0661 < 2.7825062092394e-137 *** 0.191
zuoyou shi/ling 67 54.885 228.1835 < 3.71156303299972e-85 *** 0.162
shangxia shi/ling 110 18.8931 163.9707 < 2.82205848748724e-46 *** 0.137
shangxia sui 250 42.9389 28.2455 < 4.68739599563869e-09 *** 0.057

References

Arppe, Antti & Juhani Järvikivi. 2007. Every method counts: Combining corpus-based and experimental evidence in the study of synonymy. Corpus Linguistics and Linguistic Theory 3(2). 131–159.10.1515/CLLT.2007.009Suche in Google Scholar

Chao, Yuanren. 1968. A grammar of spoken Chinese. Berkeley: University of California Press.Suche in Google Scholar

Dabrowska, Ewa. 2009. Words as constructions. In Vyvyan Evans & Stéphanie Pourcel (eds.), New directions in cognitive linguistics, 201–223. Amsterdam: John Benjamins.10.1075/hcp.24.16dabSuche in Google Scholar

De Cock, Sylvie & Diane Goossens. 2013. Approximating devices in English and French business news reporting: More or less the same? In Karin Aijmer & Bengt Altenberg (eds.), Advances in corpus-based contrastive linguistics: Studies in honour of Stig Johansson, 139–155. Amsterdam: John Benjamins.10.1075/scl.54.09decSuche in Google Scholar

Divjak, Dagmar. 2006. Ways of intending: Delineating and structuring near-synonyms. In Stefan Th Gries & Anatol Stefanowitsch (eds.), Corpora in cognitive linguistics: Corpus-based approaches to syntax and lexis, 19–56. Berlin & New York: Mouton de Gruyter.10.1515/9783110197709.19Suche in Google Scholar

Divjak, Dagmar. 2010. Structuring the lexicon: A clustered model for near-synonymy. Berlin & New York: Mouton de Gruyter.10.1515/9783110220599Suche in Google Scholar

Divjak, Dagmar & Stefan Th Gries. 2006. Ways of trying in Russian: Clustering behavioral profiles. Corpus Linguistics and Linguistic Theory 2(1). 23–60.10.1515/CLLT.2006.002Suche in Google Scholar

Edmonds, Philip & Graeme Hirst. 2002. Near-synonymy and lexical choice. Computational Linguistics 28(2). 105–144.10.1162/089120102760173625Suche in Google Scholar

Glynn, Dylan & Justyna Robinson (eds.). 2014. Corpus methods for semantics: Quantitative studies in polysemy and synonymy. Amsterdam: John Benjamins.10.1075/hcp.43Suche in Google Scholar

Gries, Stefan Th. 2001. A corpus linguistic analysis of English –Ic vs. –Ical adjectives. ICAME Journal 25. 65–108.Suche in Google Scholar

Gries, Stefan Th. 2004. HCFA 3.2. A program for R.Suche in Google Scholar

Gries, Stefan Th. 2009. Statistics for linguistic with R: A practical introduction. Berlin & New York: Mouton de Gruyter.10.1515/9783110216042Suche in Google Scholar

Gries, Stefan Th. 2010. Behavioral profiles: A fine-grained and quantitative approach in corpus-based lexical semantics. The Mental Lexicon 5(3). 323–346.10.1075/bct.47.04griSuche in Google Scholar

Gries, Stefan Th & Dagmar Divjak. 2009. Behavioral profiles: A corpus-based approach to cognitive semantic analysis. In Vyvyan Evans & Stéphanie Pourcel (eds.), New directions in cognitive linguistics, 57–75. Amsterdam: John Benjamins.10.1075/hcp.24.07griSuche in Google Scholar

Gries, Stefan Th & Dagmar Divjak. 2010. Quantitative approaches in usage-based cognitive semantics: Myths, erroneous assumptions, and a proposal. In Dylan Glynn & Kerstin Fischer (eds.), Quantitative methods in cognitive semantics: Corpus-driven approaches, 333–353. Berlin & New York: Mouton de Gruyter.10.1515/9783110226423.331Suche in Google Scholar

Gries, Stefan Th & Naoki Otani. 2010. Behavioral profiles: A corpus-based perspective on synonymy and antonymy. ICAME Journal 34. 121–150.Suche in Google Scholar

Haiman, John. 1980. The iconicity of grammar: Isomorphism and motivation. Language 56. 515–540.10.2307/414448Suche in Google Scholar

Hamawand, Zeki. 2017. The notion of approximation in language: A construal-based analysis. Cognitive Semantics 3(1). 95–120.10.1163/23526416-00301004Suche in Google Scholar

Hank, Patrick. 1996. Contextual dependency and lexical sets. International Journal of Corpus Linguistics 1(1). 775–798.10.7551/mitpress/9780262018579.003.0005Suche in Google Scholar

Haspelmath, Martin. 1997. From space to time: Temporal adverbials in the world’s languages. München & Newcastle: Lincom Europa.Suche in Google Scholar

Holmes, J. Kelvin. 2012. Orienting numbers in mental space: Horizontal organization trumps vertical. Quarterly Journal of Experimental Psychology 65(6). 1044–1051.10.1080/17470218.2012.685079Suche in Google Scholar

Janda, Laura & Victor Solovyev. 2009. What constructional profiles reveal about synonymy: A case study of the Russian words for sadness and happiness. Cognitive Linguistics 20(2). 367–393.10.1515/9783110335255.295Suche in Google Scholar

Jansegers, Marlies & Stefan Th Gries. 2017. Towards a dynamic behavioral profile: A diachronic study of polysemous sentir in Spanish. Corpus Linguistics and Linguistic Theory 13(1). 1–43.10.1515/cllt-2016-0080Suche in Google Scholar

Jansegers, Marlies, Clara Vanderschueren & Renata Enghels. 2015. The polysemy of the Spanish verb sentir: A Behavioral profile analysis. Cognitive Linguistics 26(3). 381–421.10.1515/cog-2014-0055Suche in Google Scholar

Jiang, Lansheng, Tan Jingchun & Cheng Rong (eds.). 2012. The contemporary Chinese dictionary. 6th ed. Beijing: The Commercial Press.Suche in Google Scholar

Jones, Steven & Lynne M. Murphy. 2005. Using corpora to investigate antonym acquisition. International Journal of Corpus Linguistics 10(3). 401–422.10.1075/ijcl.10.3.06jonSuche in Google Scholar

Kostić, Nataša. 2015. The textual profile of antonyms: A corpus-based study. Linguistics 53(4). 649–675.10.1515/ling-2015-0014Suche in Google Scholar

Lakoff, George. 1993. The contemporary theory of metaphor. In Andrew Ortony (ed.), Metaphor and Thought, 202–251. Cambridge: Cambridge University Press.10.1017/CBO9781139173865.013Suche in Google Scholar

Lakoff, George & Mark Johnson. 1980. Metaphors we live by. Chicago & London: University of Chicago Press.Suche in Google Scholar

Lakoff, George & Rafael Núňez. 2000. Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.Suche in Google Scholar

Lan, Chun. 2002. A cognitive approach to up/down metaphors in English and shang/xia metaphors in Chinese. In Bengt Altenberg & Sylviane Granger (eds.), Lexis in contrast, 151–174. Amsterdam: John Benjamins.10.1075/scl.7.11chuSuche in Google Scholar

Lang, Ewald. 1984. The semantics of coordination. Amsterdam: John Benjamins.10.1075/slcs.9Suche in Google Scholar

Lang, Yong. 2008. Motifs in the formation of antonymous compounds in chinese. Southwest Journal of Linguistics 27(2). 43–64.Suche in Google Scholar

Li, Charles & Sandra Thompson. 1981. Mandarin Chinese: A functional reference grammar. Berkeley: University of California Press.10.1525/9780520352858Suche in Google Scholar

Liu, Dilin. 2010. Is it a chief, main, major, primary, or principal concern?: A corpus-based behavioral profile study of the near-synonyms. International Journal of Corpus Linguistics 15(1). 56–87.10.1075/ijcl.15.1.03liuSuche in Google Scholar

Liu, Dilin. 2013. Salience and construal in the use of synonymy: A study of two sets of near-synonymous nouns. Cognitive Linguistics 24(1). 67–113.10.1515/cog-2013-0003Suche in Google Scholar

Liu, Dilin & Maggie Espino. 2012. Actually, genuinely, really, and truly: A corpus-based behavioral profile study of the near-synonymous adverbs. International Journal of Corpus Linguistics 17(2). 198–228.10.1075/ijcl.17.2.03liuSuche in Google Scholar

Liu, Yuehua, Wenyu Pan & Hua Gu. 2001. Applied modern Chinese grammar. Beijing: The Commercial Press.Suche in Google Scholar

Lu, Jianmin. 1991. On Temporal words in modern Chinese. Language Teaching and Research 1. 24–37.Suche in Google Scholar

Lü, Shuxiang. 1980. Eight hundred words in modern Chinese. Beijing: The Commercial Press.Suche in Google Scholar

Lyons, John. 1968. Introduction to theoretical linguistics. Cambridge: Cambridge University Press.10.1017/CBO9781139165570Suche in Google Scholar

Ma, Ji & Jingmin Shao. 2009. Expression ways of rough amount by anti-component compounds. Academic Research 5. 149–160.Suche in Google Scholar

Müller, Dana & Wolf Schwarz. 2007. Is there an internal association of numbers to hands? The task set influences the nature of the SNARC effect. Memory and Cognition 35(5). 1151–1161.10.3758/BF03193485Suche in Google Scholar

Murphy, M. Lynne. 2003. Semantic relations and the lexicon: Antonyms, synonyms and other semantic paradigms. Cambridge: Cambridge University Press.10.1017/CBO9780511486494Suche in Google Scholar

Niu, Shunxin. 2004. Contrastive compound words indicating direction. Journal of Yunyang Teachers College 1. 108–112.Suche in Google Scholar

Paradis, Carita, Simone Löhandorf, Joost Van de Weijer & Caroline Willners. 2015. Semantic profiles of antonymic adjectives in discourse. Linguistics 53(1). 153–191.10.1515/ling-2014-0035Suche in Google Scholar

Paris, Marie-Claude & Marie-Thérèse Vinet. 2010. Approximative zuǒyòu ‘around, about’ in Chinese. Language and Linguistics 11. 767–801.Suche in Google Scholar

Peirsmann, Yves, Dirk Geeraerts & Dirk Speelman. 2015. The corpus-based identification of cross-lectal synonyms in pluricentric language. International Journal of Corpus Linguistics 20(1). 54–80.10.1075/ijcl.20.1.03peiSuche in Google Scholar

R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/.Suche in Google Scholar

Radden, Günter. 2011. Spatial time in the West and the East. In Mario Brdar, Marija Omazic & Visnja P. Takac (eds.), Space and time in language, 1–40. Frankfurt: Peter Lang.Suche in Google Scholar

Sell, Andrea. J & Michael P. Kaschak. 2011. Processing time shifts affects the execution of motor responses. Brain and Language 117(1). 39–44.10.1016/j.bandl.2010.07.003Suche in Google Scholar

Torralbo, Ana, Julio Santiago & J. Juan Lupiáñez. 2006. Flexible conceptual projection of time onto spatial frames of reference. Cognitive Science 30(4). 745–757.10.1207/s15516709cog0000_67Suche in Google Scholar

Tuggy, David. 1999. Linguistic evidence for polysemy in the mind: A response to William Croft and Dominiek Sandra. Cognitive Linguistics 10(4). 343–368.10.1515/cogl.2001.003Suche in Google Scholar

Wierzbicka, Anna. 1986. Precision in vagueness: The semantics of English ‘approximatives’. Journal of Pragmatics 10(5). 597–614.10.1016/0378-2166(86)90016-0Suche in Google Scholar

Wu, Shuqiong. 2014. The metonymic interpretation of Chinese antonym co-occurrence constructions: The case of you X you Y. Language Sciences 45. 189–201.10.1016/j.langsci.2014.07.004Suche in Google Scholar

Xu, Jiajin, Maocheng Liang & Yunlong Jia. 2012. BFSU PowerConc 1.0. National Research Centre for Foreign Language Education, Beijing Foreign Studies University.Suche in Google Scholar

Xu, Jiajin & Wenqin Xiong. 2008. Concordance Randomizer. Beijing: National Research Center for Foreign Language Education.Suche in Google Scholar

Xu, jialin. 2015. Corpus-based Chinese studies: A historical review from the 1920s to the present. Chinese Language and Discourse 6(2). 218–244.10.1075/cld.6.2.06xuSuche in Google Scholar

Zhang, Bo. 2014. The intergroup and internal differences on two groups of approximate-quantity synonyms in Chinese. Academic Journal of LIYUN (Language Volume) 1. 44–67.Suche in Google Scholar

Zhang, Yufeng. 2004. An analysis of “X+qianhou/zuoyou/shangxia” structure. Language Teaching and Linguistic Studies 3. 30–36.Suche in Google Scholar

Published Online: 2018-11-01
Published in Print: 2021-10-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cllt-2018-0049/html?lang=de
Button zum nach oben scrollen