Home Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
Article
Licensed
Unlicensed Requires Authentication

Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities

  • Lenka Tmáková EMAIL logo , Stanislav Sekretár and Štefan Schmidt
Published/Copyright: February 1, 2016
Become an author with De Gruyter Brill

Biosurfactants have great advantages as an eco-friendly alternative to synthetic surfactants. Surface active properties and antioxidant activity of extracts prepared from Sapindus mukorossi, Verbascum densiflorum, Equisetum arvense, Betula pendula and Bellis perennis have been studied. The extract from Sapindus mukorossi served as a standard because it belongs to the most widely used natural surfactants. The surface active properties of these nonionic surfactants were also compared with the properties of common synthetic surfactants such as sodium lauryl sulfate (SLS) and Tween® 80. In many cases, the plant-derived surfactants showed better properties than the synthetic ones, e.g. minimum critical micelle concentration values were observed for E. arvense (0.033 g L–1 ), B. perennis (0.076 g L–1), or minimum surface tension reached for the extract of B. perennis (36.8 mN m–1).

Acknowledgements.

Acknowledgements. The authors wish to express their gratitude for the support received from the Slovak Research and Development Agency under the contract no. APVV 0850-11 and by the Scientific Grant Agency of the Slovak Republic (project VEGA 1/0860/13).

References

Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (pp. 340–347). Madrid, Spain: Formatex.Search in Google Scholar

Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (6th ed.). New York, NY, USA: Wiley.Search in Google Scholar

Alamanou, S., & Doxastakis, G. (1997). Effect of wet extraction methods on emulsifying and foaming properties of lupin seed protein isolates (Lupinus alb us ssp. Graecus). Food Hydro-colloids, 11, 409–413. DOI: 10.1016/s0268-005x(97)80038-0.10.1016/s0268-005x(97)80038-0Search in Google Scholar

Balakrishnan, S., Varughese, S., & Deshpande, A. P. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside, Surfactants, Detergents, 43, 262–268. DOI: 10.3139/113.100315.10.3139/113.100315Search in Google Scholar

Carey, E., & Stubenrauch, C. (2010). Foaming properties of mixtures of a non-ionic (C12DMPO) and anionic surfactant (C12TAB). Journal of Colloid and Interface Science, 346, 414423. DOI: 10.1016/j.jcis.2010.03.013.10.1016/j.jcis.2010.03.013Search in Google Scholar

Ceylan, O., Ugur, A., & Sarac, N. (2014). In vitro antimicrobial, antioxidant, antibiofilm and quorum sensing inhibitory activities of Bellis perennis L. Journal of BioScience and Biotechnology, 2014, 35–42.Search in Google Scholar

Chen, W. J., Hsiao, L. C., & Chen, K. K. Y. (2008). Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponic biosurfactant. Process Biochemistry, 43, 488–498. DOI: 10.1016/j.procbio. 2007.11.017.10.1016/j.procbio.2007.11.017Search in Google Scholar

Chen, Y. F., Yang, C. H., Chang, M. S., Ciou, Y. P., & Huang, Y. C. (2010a). Foam properties and detergent abilities of the saponins from Camellia oleifera. International Journal of Molecular Sciences, 11, 4417–4425. DOI: 10.3390/ijms11114417.10.3390/ijms11114417Search in Google Scholar

Chen, C. Y., Kuo, P. L., Chen, Y. H., Huang, J. C., Ho, M. L., Lin, R. J., Chang, J. S., & Wang, H. M. (2010b). Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. Journal of the Taiwan Institute of Chemical Engineers, 41, 129–135. DOI: 10.1016/j.jtice.2009.08.005.10.1016/j.jtice.2009.08.005Search in Google Scholar

Chhetri, A. B., Watts, K. C., Rahman, M. S., & Islam, M. R. (2009). Soapnut extract as a natural surfactant for enhanced oil recovery. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 31, 1893–1903. DOI: 10.1080/15567030802462622.10.1080/15567030802462622Search in Google Scholar

Clarkson, J. R., Cui, Z. F., & Darton, R. C. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4, 107–114. DOI: 10.1016/s1369-703x(99)00038-8.10.1016/s1369-703x(99)00038-8Search in Google Scholar

Dluzewski, M., Dluzewska, E., & Kwasek, L. (1994). Comparison of foaming properties by the volumetric and conductometric methods. Polish Journal of Food and Nutrition Sciences, 3, 155–164.Search in Google Scholar

Eastoe, J., & Dalton, J. S. (2000). Dynamic surface tension and adsorption mechanisms surfactants at the air-water interface. Advances in Colloid and Interface Science, 85, 103–144. DOI: 10.1016/s0001-8686(99)00017-2.10.1016/s0001-8686(99)00017-2Search in Google Scholar

Fendler, J. H., & Fendler, E. (1975). Catalysis in micellar and macromolecular systems. New York, NY, USA: Academic Press.Search in Google Scholar

Fu, Y., Lei, P., Han, Y. M., & Yan, D. (2010). Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis. Journal of Chinese Medicinal Materials, 33, 267–272.Search in Google Scholar

Germanò, M. P., Cacciola, F., Donato, P., Dugo, P., Certo, G., D’Angelo, V., Mondello, L., & Rapisarda, A. (2012). Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia, 83, 877–882. DOI: 10.1016/j.fitote.2012.03.021.10.1016/j.fitote.2012.03.021Search in Google Scholar PubMed

Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2010a). Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International Journal of Molecular Sciences, 11, 4539–4555. DOI: 10.3390/ijms11114539.10.3390/ijms11114539Search in Google Scholar

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E., & Halim, M. R. (2010b). Effect of different light intensities on total phenolics and flavonoid synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897. DOI: 10.3390/ijms11103885.10.3390/ijms11103885Search in Google Scholar

Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114. DOI: 10.3390/ijms12021101.10.3390/ijms12021101Search in Google Scholar

Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2004). Antioxidant activity of saponins isolated from ivy: α-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica, 70, 561–563. DOI: 10.1055/s-2004-827158.10.1055/s-2004-827158Search in Google Scholar

Handali, S., Moghimipour, E., Kooshapour, H., Rezaee, S., & Khalili, S. (2014). In vitro cholesterol binding afinity of total sponin extracted from Glycyrrhiza glabra. Asian Journal of Pharmaceutical and Clinical Research, 7, 170–173.Search in Google Scholar

Harborne, J. B., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18, 310–333. DOI: 10.1039/b006257j.10.1039/b006257jSearch in Google Scholar

Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 148–159. DOI: 10.1016/s1359-0294(01)00074-7.10.1016/s1359-0294(01)00074-7Search in Google Scholar

Hong, K. J., Tokunaga, S., & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 49, 379–387. DOI: 10.1016/s0045-6535(02)00321-1.10.1016/s0045-6535(02)00321-1Search in Google Scholar

Ibrahim, M. H., & Jaafar, H. Z. E. (2013). Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules, 18, 7957–7976. DOI: 10.3390/molecules18077957.10.3390/molecules18077957Search in Google Scholar PubMed PubMed Central

Jeong, G. T., Park, E. S., Wahlig, V. L., Burapatana, V., Park, D. H., & Tanner, R. D. (2004). Effect of pH on the foam fractionation of Mimosa pudica L. seed proteins. Industrial & Engineering Chemistry Research, 43, 422–427. DOI: 10.1021/ie060318l.10.1021/ie060318lSearch in Google Scholar

Jian, H. L., Liao, X. X., Zhu, L. W., Zhang, W. M., & Jiang, J. X. (2011). Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. Journal of Colloid and Interface Science, 359, 487–492. DOI: 10.1016/j.jcis.2011.04.038.10.1016/j.jcis.2011.04.038Search in Google Scholar PubMed

Khan, A. M., & Shah, S. S. (2008). Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal of the Chemical Society of Pakistan, 30, 186–191.Search in Google Scholar

Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.Search in Google Scholar

Li, Y., Du, Y. M., & Zou, C. (2009). Effects of pH on antioxidant and antimicrobial properties of tea saponins. European Food Research & Technology, 228, 1023–1028. DOI: 10.1007/s00217-009-1014-3.10.1007/s00217-009-1014-3Search in Google Scholar

Li, M. Z., Qiao, N., & Wang, K. (2013a). Influence of sodium lauryl sulfate and Tween 80 on carbamazepine–nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics, 5, 508–524. DOI: 10.3390/pharmaceutics5040508.10.3390/pharmaceutics5040508Search in Google Scholar

Li, R., Wu, Z. L., Wang, Y. J., & Li, L. L. (2013b). Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Industrial Crops and Products, 51, 163–170. DOI: 10.1016/j.indcrop.2013.08.079.10.1016/j.indcrop.2013.08.079Search in Google Scholar

Lunkenheimer, K., & Wantke, K. D. (1978). On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solutions. Journal of Colloid and Interface Science, 66, 579–581. DOI: 10.1016/0021-9797(78)90079-6.10.1016/0021-9797(78)90079-6Search in Google Scholar

Lunkenheimer, K., & Malysa, K. (2003). Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6, 69–74. DOI: 10.1007/s11743-003-0251-8.10.1007/s11743-003-0251-8Search in Google Scholar

Ma, Y. B., He, Y. X., Peng, L. X., Wu, J. W., & Mi, Z. J. (2011). Study on isolation and purification of saponin from Sapindaceae with macroporous resin. Chinese Journal of Experimental Traditional Medicinal Formulae, 17, 23–25.Search in Google Scholar

Mahmood, M. E., & Al-Koofee, D. A. F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Global Journal of Science Frontier Research Chemistry, 13, 1–4.Search in Google Scholar

Mainkar, A. R., & Jolly, C. I. (2000). Evaluation of commercial herbal shampoos. International Journal of Cosmetic Science, 22, 385–391. DOI: 10.1046/j.1467-2494.2000.00047.x.10.1046/j.1467-2494.2000.00047.xSearch in Google Scholar PubMed

Máriássyová, M. (2006). Antioxidant activity of some herbal extracts in rapeseed and sunflower oils. Journal of Food and Nutrition Research, 45, 104–109.Search in Google Scholar

McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47, 611–649. DOI: 10.1080/10408390701289292.10.1080/10408390701289292Search in Google Scholar PubMed

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130. DOI: 10.1002/ptr.687.10.1002/ptr.687Search in Google Scholar PubMed

Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., & Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13, 1455–1464. DOI: 10.3390/molecules13071455.10.3390/molecules13071455Search in Google Scholar PubMed PubMed Central

Mitra, S., & Dungan, S. R. (1997). Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agriculture and Food Chemistry, 45, 1587–1595. DOI: 10.1021/jf960349z.10.1021/jf960349zSearch in Google Scholar

Mousli, R., & Tazerouti, A. (2007). Direct method of preparation of dodecanesulfonamide derivatives and some surface properties. Journal of Surfactants and Detergents, 10, 279–285. DOI: 10.1007/s11743-007-1043-5.10.1007/s11743-007-1043-5Search in Google Scholar

Mulligan, C. N. (2005). Environmental applications for bio-surfactants. Environmental Pollution, 133, 183–198. DOI: 10.1016/j.envpol.2004.06.009.10.1016/j.envpol.2004.06.009Search in Google Scholar PubMed

Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372–378. DOI: 10.1016/j.cocis.2009. 06.005.10.1016/j.cocis.2009.06.005Search in Google Scholar

Muntaha, S. T., & Khan, M. N. (2015). Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant – a dye surfactant interaction study. Journal of Cleaner Production, 93, 145–150. DOI: 10.1016/j.jclepro.2015.01.023.10.1016/j.jclepro.2015.01.023Search in Google Scholar

Murakami, M., Yamaguchi, T., Takamura, H., & Matoba, T. (2003). Effects of ascorbic acid and α-tocopherol on antioxidant activity of polyphenolic compounds. Journal of Food Science, 68, 1622–1625. DOI: 10.1111/j.1365-2621.2003. tb12302.x.10.1111/j.1365-2621.2003.tb12302.xSearch in Google Scholar

Nakayama, K., Fujino, H., Kasai, R., Mitoma, Y., Yata, N., & Tanaka, O. (1986). Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chemical and Pharmaceutical Bulletin, 34, 3279–3283. DOI: 10.1248/cpb.34.3279.10.1248/cpb.34.3279Search in Google Scholar PubMed

Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. DOI: 10.1016/j.jfoodeng.2014.06.015.10.1016/j.jfoodeng.2014.06.015Search in Google Scholar

Rahman, P. K. S. M., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants –Review. Biotechnology, 7, 360–370. DOI: 10.3923/biotech.2008.360. 370.10.3923/biotech.2008.360.370Search in Google Scholar

Ribeiro, B. D., Alviano, D. S., Barreto, D. W., & Coelho, M. A. Z. (2013). Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 736–743. DOI: 10.1016/j.colsurfa.2013.08.007.10.1016/j.colsurfa.2013.08.007Search in Google Scholar

Rosen, J. M. (2004). Surfactants and interfacial phenomena (3rd ed.). New York, NY, USA: Wiley.10.1002/0471670561Search in Google Scholar

Ross, J., & Miles, G. D. (1941). An apparatus for comparison of foaming properties of soaps and detergents. Journal of the American Oil Chemists’ Society, 18, 99–102. DOI: 10.1007/bf02545418.10.1007/bf02545418Search in Google Scholar

Roy, D., Kommalapati, R. R., Mandava, S. S., Valsaraj, K. T., & Constant, W. D. (1997). Soil washing potential of a natural surfactant. Environmental Science & Technology, 31, 670–675. DOI: 10.1021/es960181y.10.1021/es960181ySearch in Google Scholar

Salati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29, 913–922. DOI: 10.1016/j.biotechadv.2011.07.012.10.1016/j.biotechadv.2011.07.012Search in Google Scholar

Siatka, T., & Kašparová, M. (2010). Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules, 15, 9450–9461. DOI: 10.3390/molecules15129450.10.3390/molecules15129450Search in Google Scholar

Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Rodrigues, V. P., Rennó, M. N., Falcão, D. Q., Cerqueira, D. M., Minto, A. B. M., Nogueira, F. L. P., Quaresma, C. H., Silva, J. F. M., Menezes, F. S., & Eleutherio, E. C. A. (2005). Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research, 52, 229–233. DOI: 10.1016/j.phrs.2005.03.008.10.1016/j.phrs.2005.03.008Search in Google Scholar

Song, S. S., Zhu, L. Z., & Zhou, W. J. (2008). Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactants. Environmental Pollution, 156, 1368–1370. DOI: 10.1016/j.envpol.2008.06. 018.10.1016/j.envpol.2008.06.018Search in Google Scholar

Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243. DOI: 10.1016/j.jep.2004. 05.016.10.1016/j.jep.2004.05.016Search in Google Scholar

Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80, 399–407. DOI: 10.1016/s0308-8146(02)00282-0.10.1016/s0308-8146(02)00282-0Search in Google Scholar

Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150. DOI: 10.1016/j.chemosphere.2004.07.048.10.1016/j.chemosphere.2004.07.048Search in Google Scholar PubMed

Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297. DOI: 10.1016/j.phytochem. 2006.10.008.10.1016/j.phytochem. 2006.10.008Search in Google Scholar

von Rybinski, W. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 146–147. DOI: 10.1016/s1359-0294(01)00081-4.10.1016/s1359-0294(01)00081-4Search in Google Scholar

Wu, H., Zhang, L., Wang, N., Guo, Y. Z., Weng, Z., Sun, Z. Y., Xu, D. P., Xie, Y. F., & Yao, W. R. (2014). Analysis of the bioactive components of Sapindus saponins. Industrial Crops and Products, 61, 422–429. DOI: 10.1016/j.indcrop.2014.07. 026.10.1016/j.indcrop.2014.07.026Search in Google Scholar

Yang, C. H., Huang, Y. C, Chen, Y. F., & Chang, M. H. (2010). Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. Journal of Food and Drug Analysis, 18, 155–160.Search in Google Scholar

Yang, Y., Leser, M. E., Sher, A. A., & McClements, D. J. (2013). Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocolloids, 30, 589–596. DOI: 10.1016/j.foodhyd.2012.08. 008.10.1016/j.foodhyd.2012.08.008Search in Google Scholar

Yin, S. W., Chen, J. C, Sun, S. D., Tang, C. H., Yang, X. Q., Wen, Q. B., & Qi, J. R. (2011). Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 128, 420–426. DOI: 10.1016/j.foodchem.2011.03. 046.10.1016/j.foodchem.2011.03.046Search in Google Scholar PubMed

Zdziennicka, A., Szymczyk, K., Krawczyk, J., & Jan´czuk, B. (2012). Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria, 322–323, 126–134. DOI: 10.1016/j.fluid. 2012.03.018.10.1016/j.fluid. 2012.03.018Search in Google Scholar

Zhou, W. J., Yang, J. J., Lou, L. J., & Zhu, L. Z. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159, 1198–1204. DOI: 10.1016/j.envpol.2011.02.001.10.1016/j.envpol.2011.02.001Search in Google Scholar PubMed

Zhou, W. J., Wang, X. H., Chen, C. P., & Zhu, L. Z. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122–128. DOI: 10.1016/j.colsurfa.2013.02.055.10.1016/j.colsurfa.2013.02.055Search in Google Scholar

Received: 2015-2-16
Revised: 2015-6-12
Accepted: 2015-8-2
Published Online: 2016-2-1
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Erratum
  2. Erratum to “Arzugul Muslim, Dilnur Malik, Mehriban Hojiahmat: RAFT polymerization of linear ABC triblock copolymer PtBA-b-PS-b-P2VP and regulation of its hierarchical self-assembly structure in solution”, Chemical Papers 69 (11) 1512-1518 (2015)*
  3. Original Paper
  4. Nanoscale lanthanum oxide catalysts for self-condensation of acetone: preparation via self-assembly on anodic aluminum oxide, structure, and properties
  5. Original Paper
  6. Measuring the three forms of ellagic acid: suitability of extraction solvents
  7. Original Paper
  8. Relationship between acidification factors and methylene blue uptake by Ca-bentonite: optimisation and kinetic study
  9. Original Paper
  10. Reactivity of palladium nanoparticles supported on a microemulsion-based organogel network in supercritical carbon dioxide
  11. Original Paper
  12. Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier
  13. Original Paper
  14. Effect of active acidic compounds on storage stability of coker naphtha
  15. Original Paper
  16. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities
  17. Original Paper
  18. Interaction of metallic zirconium and its alloys Zry-2 and E110 with molten eutectic salt of LiF–NaF–KF containing zirconium fluoride components
  19. Original Paper
  20. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud
  21. Original Paper
  22. A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties
  23. Original Paper
  24. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
  25. Original Paper
  26. Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery
Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0200/html?lang=en
Scroll to top button