Startseite Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid

  • Ming-Shi Feng , Jia-Duo Liu EMAIL logo , Fang-Bai Zhang und Li-Hong Huang
Veröffentlicht/Copyright: 29. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Olivine is abundant in the Earth’s upper mantle; it has applications in catalysts to enhance their stability in structures. The olivine-type catalysts were prepared by co-precipitation and hydrothermal synthesis and tested in the auto-thermal reforming (ATR) of acetic acid (AC), a model compound from bio-oil, for hydrogen production. In the meantime, the natural olivine impregnated with Ni was also tested. Characterisations of XRD, nitrogen physisorption, temperature-programmed reduction, and SEM-EDX were used to find the structure-reactivity relationship. The results indicate that the natural olivine produced a low H2 yield close to 0.17 mole of H2 per 1 mole of AC, while the olivine impregnated with Ni produced a H2 yield of from 2.19 mole to 2.73 mole of H2 per mole of AC. The olivine catalyst prepared by hydrothermal synthesis performed better in both activity and stability: the H2 yield achieved 3.06 mole of H2 per mole of AC and remained stable, which could be attributed to the higher surface area and stability with Ni inserted in the skeleton of olivine.

References

An, L., Dong, C. Q., Yang, Y. P., Zhang, J. J., & He, L. (2011). The influence of Ni loading on coke formation in steam reforming of acetic acid. Renewable Energy, 36, 930-935. DOI: 10.1016/j.renene.2010.08.029.10.1016/j.renene.2010.08.029Suche in Google Scholar

Atong, D., Pechyen, C., Aht-Ong, D., & Sricharoenchaikul, V. (2011). Synthetic olivine supported nickel catalysts for gasification of glycerol. Applied Clay Science, 53, 244-253. DOI: 10.1016/j.clay.2011.01.030.10.1016/j.clay.2011.01.030Suche in Google Scholar

Bernardi, M. I. B., Araújo, V. D., Ribeiro, C., Avansi, W., Longo, E., de Albuquerque, N. A., Meneghetti, S. M. P., Almeida, R. M., & Fajardo, H. V. (2014). Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1−xMnxO in cellulose conversion. Chemical Papers, 68, 1213-1218. DOI: 10.2478/s11696-013-0468-8.10.2478/s11696-013-0468-8Suche in Google Scholar

Bimbela, F., Oliva, M., Ruiz, J., García, L., & Arauzo, J. (2013). Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts. International Journal of Hydrogen Energy, 38, 14476-14487. DOI: 10.1016/j.ijhydene.2013.09.038.10.1016/j.ijhydene.2013.09.038Suche in Google Scholar

Chaubey, R., Sahu, S., James, O. O., & Maity, S. (2013). A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443-462. DOI: 10.1016/j.rser.2013.02.019.10.1016/j.rser.2013.02.019Suche in Google Scholar

Cheah, S., Gaston, K. R., Parent, Y. O., Jarvis, M. W., Vinzant, T. B., Smith, K. M., Thornburg, N. E., Nimlos, M. R., & Magrini-Bair, K. A. (2013). Nickel cerium olivine catalyst for catalytic gasification of biomass. Applied Catalysis B: Environmental, 134-135, 34-45. DOI: 10.1016/j.apcatb.2012.12.022.10.1016/j.apcatb.2012.12.022Suche in Google Scholar

Cheng, F., & Dupont, V. (2013). Nickel catalyst auto-reduction during steam reforming of bio-oil model compound acetic acid. International Journal of Hydrogen Energy, 38, 15160-15172. DOI: 10.1016/j.ijhydene.2013.09.111.10.1016/j.ijhydene.2013.09.111Suche in Google Scholar

Courson, C., Udron, L., ´Swierczy´nski, D., Petit, C., & Kiennemann, A. (2002). Hydrogen production from biomass gasification on nickel catalysts: Tests for dry reforming of methane. Catalysis Today, 76, 75-86. DOI: 10.1016/s0920-5861(02)00202-x.10.1016/S0920-5861(02)00202-XSuche in Google Scholar

Cristiani, C., Dotelli, G., Mariani, M., Pelosato, R., & Zampori, L. (2013). Synthesis of nanostructured perovskite powders via simple carbonate co-precipitation. Chemical Papers, 67, 526-531. DOI: 10.2478/s11696-013-0306-z.10.2478/s11696-013-0306-zSuche in Google Scholar

Dachs, E., Geiger, C. A., von Seckendorff, V., & Grodzicki, M. (2007). A low-temperature calorimetric study of synthetic (forsterite + fayalite) {(Mg2SiO4 + Fe2 SiO4)} solid solutions: An analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. The Journal of Chemical Thermodynamics, 39, 906-933. DOI: 10.1016/j.jct.2006.11.009.10.1016/j.jct.2006.11.009Suche in Google Scholar

Devi, L., Craje, M., Th¨une, P., Ptasinski, K. J., & Janssen, F. J. J. G. (2005). Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization. Applied Catalysis A: General, 294, 68-79. DOI: 10.1016/j.apcata.2005.07.044.10.1016/j.apcata.2005.07.044Suche in Google Scholar

Hu, R. R., Yan, C. F., Zheng, X. X., Liu, H., & Zhou, Z. Y. (2013). Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid. International Journal of Hydrogen Energy, 38, 6033-6038. DOI: 10.1016/j.ijhydene.2012. 12.141.Suche in Google Scholar

Huang, L. H., Zhang, F. B., Chen, R. R., & Hsu, A. T. (2012). Manganese-promoted nickel/alumina catalysts for hydrogen production via auto-thermal reforming of ethanol. International Journal of Hydrogen Energy, 37, 15908-15913. DOI: 10.1016/j.ijhydene.2012.08.050.10.1016/j.ijhydene.2012.08.050Suche in Google Scholar

Huang, L. H., Liu, Q., Chen, R. R., Chu, D. R., & Hsu, A. T. (2010). Layered double hydroxide derived Co0.3Mg2.7Al1−x FexO4.5±δ catalysts for hydrogen production via autothermal reforming of bio-ethanol. Catalysis Communications, 12, 40-45. DOI: 10.1016/j.catcom.2010.05.019.10.1016/j.catcom.2010.05.019Suche in Google Scholar

Huang, L. H., Liu, Q., Chen, R. R., & Hsu, A. T. (2011). Hydrogen production via auto-thermal reforming of bioethanol: The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts. Applied Catalysis A: General, 393, 302-308. DOI: 10.1016/j.apcata.2010.12.010.10.1016/j.apcata.2010.12.010Suche in Google Scholar

Hwang, C. S., & Wang, N. C. (2004). Preparation and characteristics of ferrite catalysts for reduction of CO2. Materials Chemistry and Physics, 88, 258-263. DOI: 10.1016/j. matchemphys.2004.02.028.Suche in Google Scholar

Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., & Vasalos, I. A. (2008). Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor. Industrial & Engineering Chemistry Research, 48, 1400-1408. DOI: 10.1021/ie8013378. 10.1021/ie8013378Suche in Google Scholar

Swierczynski, D., Libs, S., Courson, C., & Kiennemann, A. (2007). Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 74, 211-222. DOI: 10.1016/j.apcatb.2007.01.017.10.1016/j.apcatb.2007.01.017Suche in Google Scholar

Trane, R., Dahl, S., Skjøth-Rasmussen, M. S., & Jensen, A. D. (2012). Catalytic steam reforming of bio-oil. International Journal of Hydrogen Energy, 37, 6447-6472. DOI: 10.1016/j.ijhydene.2012.01.023.10.1016/j.ijhydene.2012.01.023Suche in Google Scholar

Vagia, E. C., & Lemonidou, A. A. (2007). Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. International Journal of Hydrogen Energy, 32, 212-223. DOI: 10.1016/j.ijhydene.2006.08.021.10.1016/j.ijhydene.2006.08.021Suche in Google Scholar

Virginie, M., Courson, C., Niznansky, D., Chaoui, N., & Kiennemann, A. (2010). Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental, 101, 90-100. DOI: 10.1016/j.apcatb.2010.09.011.10.1016/j.apcatb.2010.09.011Suche in Google Scholar

Yang, X. Q., Xu, S. P., Xu, H. L., Liu, X. D., & Liu, C. H. (2010). Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catalysis Communications, 11, 383-386. DOI: 10.1016/j.catcom.2009.11. 006.Suche in Google Scholar

Zhang, R. Q., Wang, Y. C., & Brown, R. C. (2007). Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2. Energy Conversion and Management, 48, 68-77. DOI: 10.1016/j.enconman.2006.05.001. 10.1016/j.enconman.2006.05.001Suche in Google Scholar

Received: 2014-8-25
Revised: 2015-3-2
Accepted: 2015-4-1
Published Online: 2015-5-29
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0137/html?lang=de
Button zum nach oben scrollen