Home Application of polypyrrole nanowires for the development of a tyrosinase biosensor
Article
Licensed
Unlicensed Requires Authentication

Application of polypyrrole nanowires for the development of a tyrosinase biosensor

  • Jolanta Kochana EMAIL logo , Katarzyna Hnida , Grzegorz Sulka , Paweł Knihnicki , Joanna Kozak and Agnieszka Gilowska
Published/Copyright: May 15, 2015
Become an author with De Gruyter Brill

Abstract

Polypyrrole nanowires (PPyNWs) were fabricated and examined as a structural component of amperometric biosensor matrix. An enzyme, tyrosinase (TYR), was immobilized onto PPyNWs using glutaraldehyde (GA). Matrix composite morphology was investigated using scanning electron microscopy. Electrochemical behavior of the prepared PPyNWs/GA/TYR biosensor towards catechol was studied and the assessment of its analytical characteristics was carried out taking into account linear range, sensitivity, repeatability, reproducibility and operational stability.

References

Apetrei, C., Rodriguez-Mendez, M. L., & De Saja, J. A. (2011). Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochimica Acta, 56, 8919-8925. DOI: 10.1016/j.electacta.2011.07.127.10.1016/j.electacta.2011.07.127Search in Google Scholar

Bai, S. L., Zhang, K. W., Sun, J.H., Zhang, D. F., Luo,R.X., Li, D. Q., & Liu, C. C. (2014). Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sensors and Actuators B, 197, 142-148. DOI: 10.1016/j.snb.2014.02.038.10.1016/j.snb.2014.02.038Search in Google Scholar

Cernat, A., Le Goff, A., Holzinger, M., Sandulescu, R., & Cosnier, S. (2014). Micro- to nanostructured poly(pyrrolenitrilotriacetic acid) films via nanosphere templates: Applications to 3D enzyme attachment by affinity interactions. Analytical and Bioanalytical Chemistry, 406, 1141-1147. DOI: 10.1007/s00216-013-7135-3.10.1007/s00216-013-7135-3Search in Google Scholar PubMed

Ćirić-Marjanović, G., Pašti I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chemical Papers, 67, 781-813. DOI: 10.2478/s11696-013-0312-1.10.2478/s11696-013-0312-1Search in Google Scholar

ElKaoutit, M., Naranjo-Rodriguez, I., Dominguez, M., & Hidalgo-Hidalgo-de-Cisneros, J. L. (2011). Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies. Applied Surface Science, 257, 10926-10935. DOI: 10.1016/j.apsusc.2011.08.009.10.1016/j.apsusc.2011.08.009Search in Google Scholar

Hnida, K. E., Socha, R. P., & Sulka, G. D. (2013). Polypyrrole-silver composite nanowire arrays by cathodic co-deposition and their electrochemical properties. The Journal of Physical Chemistry C, 117, 19382-19392. DOI: 10.1021/jp4038304.10.1021/jp4038304Search in Google Scholar

Hamilton, A., & Breslin, C. B. (2014). The development of a novel urea sensor using polypyrrole. Electrochimica Acta, 145, 19-26. DOI: 10.1016/j.electacta.2014.08.052.10.1016/j.electacta.2014.08.052Search in Google Scholar

Han, R. X., Cui, L., Ai, S. Y., Yin, H. S., Liu, X. G., & Qiu, Y. Y. (2012). Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. Journal of Solid State Electrochemistry, 16, 449-456. DOI: 10.1007/s10008-011-1352-5.10.1007/s10008-011-1352-5Search in Google Scholar

Kochana, J., Kozak, J., Skrobisz, A., & Wo´zniakiewicz, M. (2012). Tyrosinase biosensor for benzoic acid inhibitionbased determination with the use of a flow-batch monosegmented sequential injection system. Talanta, 96, 147-152. DOI: 10.1016/j.talanta.2011.12.009.10.1016/j.talanta.2011.12.009Search in Google Scholar PubMed

Krzyczmonik, P., Socha, E., & Skrzypek, S. (2015). Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 101, 8-13. DOI: 10.1016/j.bioelechem.2014.06.009.10.1016/j.bioelechem.2014.06.009Search in Google Scholar PubMed

Li, X. R., Ren, T. K., Wang, A., & Ji, X. P. (2013). Gold nanoparticles-enhances amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes. Analytical Sciences, 29, 473-477. DOI: 10.2116/analsci.29.473.10.2116/analsci.29.473Search in Google Scholar PubMed

Mai, A. T., Duc, T. P., Thi, X. C., Nguyen, M. H., & Nguyen, H. H. (2014). Highly sensitive DNA sensor based on polypyrrole nanowire. Applied Surface Science, 309, 285-289. DOI: 10.1016/j.apsusc.2014.05.032.10.1016/j.apsusc.2014.05.032Search in Google Scholar

Medina-Plaza, C., de Saja, J. A., & Rodriguez-Mendez, M. L. (2014). Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosensors and Bioelectronics, 57, 276-283. DOI: 10.1016/j.bios.2014.02.023.10.1016/j.bios.2014.02.023Search in Google Scholar PubMed

Mosnačkova, K., Chehimi, M., Fedorko, P., & Omastova, M. (2013). Polyamide grafted with polypyrrole: Formation, properties and stability. Chemical Papers, 67, 979-994. DOI: 10.2478/s11696-012-0305-5.10.2478/s11696-012-0305-5Search in Google Scholar

Nowicka, A. M., Fau, M., Rapecki, T., & Donten, M. (2014). Polypyrrole-Au nanoparticles composite as suitable platform for DNA biosensor with electrochemical impedance spectroscopy detection. Electrochimica Acta, 140, 65-71. DOI: 10.1016/j.electacta.2014.03.187.10.1016/j.electacta.2014.03.187Search in Google Scholar

Park, E. S., Jang, D. H., Lee, Y. I., Jung, C. W., Lim, D. W., Kim, B. S., Jeong, Y. K., Myung, N. V., & Choa, Y. H. (2014). Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. Research on Chemical Intermediates, 40, 2565-2570. DOI: 10.1007/s11164-014-1669-7.10.1007/s11164-014-1669-7Search in Google Scholar

Srinives, S., Sarkar, T., & Mulchandani, A. (2014). Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B, 194, 255-259. DOI: 10.1016/j.snb.2013.12.079.10.1016/j.snb.2013.12.079Search in Google Scholar

Sulka, G. D., Hnida, K., & Brzozka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochimica Acta, 104, 536-541. DOI: 10.1016/j.electacta.2012.12.064.10.1016/j.electacta.2012.12.064Search in Google Scholar

Tran, T. L., Chu, T. X., Huynh, D. C., Luu, T. H. T.,&Mai, A. T. (2014). Effective immobilization of DNA for development of polypyrrole nanowires based biosensor. Applied Surface Science, 314, 260-265. DOI: 10.1016/j.apsusc.2014.06.068.10.1016/j.apsusc.2014.06.068Search in Google Scholar

Vicentini, F. C., Janegitz, B. C., Brett, C. M. A., & Fatibello-Filho, O. (2013). Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sensors and Actuators B, 188, 1101-1108. DOI: 10.1016/j.snb.2013.07.109.10.1016/j.snb.2013.07.109Search in Google Scholar

Xu, G. Q., Adeloju, S. B., Wu, Y. C., & Zhang, X. Y. (2012). Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Analytica Chimica Acta, 755, 100-107. DOI: 10.1016/j.aca.2012.09.037.10.1016/j.aca.2012.09.037Search in Google Scholar PubMed

Zhang, L., Meng, F. L., Chen, Y., Liu, J. Y., Sun, Y. F., Luo, T., Li, M. Q., & Liu, J. H. (2009). A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors and Actuators B, 142, 204-209. DOI: 10.1016/j.snb.2009.07.042. 10.1016/j.snb.2009.07.042Search in Google Scholar

Received: 2014-11-27
Revised: 2015-2-9
Accepted: 2015-2-13
Published Online: 2015-5-15
Published in Print: 2015-8-1

© Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Deferoxamine–paper for iron(III) and vanadium(V) sensing
  2. Integrated investigations for the characterisation of Roman lead-glazed pottery from Pompeii and Herculaneum (Italy)
  3. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples
  4. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors
  5. Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts
  6. Displacement washing of soda rapeseed pulp
  7. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition
  8. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils
  9. Syntheses, structures and properties of isonicotinamidium, thionicotinamidium, 2- and 3-(hydroxymethyl)pyridinium nitrates
  10. Density of lithium fluoride–lithium carbonate-based molten salts
  11. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones
  12. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents
  13. Application of polypyrrole nanowires for the development of a tyrosinase biosensor
  14. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus
  15. Erratum to “Ľubomír Vančo, Magdaléna Kadlečíková, Juraj Breza, Pavol Michniak, Michal Čeppan, Milena Reháková, Eva Belányiová, Beata Butvinová: Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy”, Chemical Papers 69 (4) 518–526 (2015)
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0114/pdf
Scroll to top button