Abstract
Ce-Ti-W-Ox catalysts were prepared and applied to the NH3-selective catalytic reduction (SCR) reaction. The experimental results showed that the Ce-Ti-W-Ox catalyst prepared by the hydrothermal method exhibited higher NO conversion than those synthesised via the sol-gel and impregnating methods, while the optimal content of WO3 and molar ratio of Ce/Ti were 20 mass % and 4 : 6, respectively. Under these conditions, the catalyst exhibited the highest level of catalytic activity (the NO conversion reached values higher than 90 %) across a wide temperature range of 225-450◦C, with a range of gas hourly space velocity (GHSV) of 40000-140000 h−1. The catalyst also exhibited good resistance to H2O and SO2. The influences of morphology, phase structure, and surface properties on the catalytic performance were investigated by N2 adsorption-desorption measurement, XRD, XPS, H2-TPR, and SEM. It was found that the high efficiency of NO removal was due to the large BET surface area, the amorphous surface species, the change to element valence states, and the strong interaction between Ce, Ti, and W.
References
Amiridis, M. D., Wachs, I. E., Deo, G., Jehng, J. M., & Kim, D. S. (1996). Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: Influence of vanadia loading, H2O, and SO2. Journal of Catalysis, 161, 247-253. DOI: 10.1006/jcat.1996.0182.10.1006/jcat.1996.0182Search in Google Scholar
Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18, 1-36. DOI: 10.1016/s0926-3373(98)00040-x.10.1016/S0926-3373(98)00040-XSearch in Google Scholar
Chen, L., Li, J. H., Ge, M. F., & Zhu, R. H. (2010). Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catalysis Today, 153, 77-83. DOI: 10.1016/j.cattod.2010.01.062.10.1016/j.cattod.2010.01.062Search in Google Scholar
Chen, L., Li, J. H., Ablikim, W., Wang, J., Chang, H. Z., Ma, L., Xu, J. Y., Ge, M. F., & Arandiyan, H. (2011). CeO2-WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range. Catalysis Letters, 141, 1859-1864. DOI: 10.1007/s10562-011-0701-4.10.1007/s10562-011-0701-4Search in Google Scholar
Chmielarz, L., Kowalczyk, A., Wojciechowska, M., Boro´n, P., Dudek, B., & Michalik, M. (2014). Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chemical Papers, 68, 1219-1227. DOI: 10.2478/s11696-013-0463-0.10.2478/s11696-013-0463-0Search in Google Scholar
Djerad, S., Crocoll, M., Kureti, S., Tifouti, L., & Weisweiler, W. (2006). Effect of oxygen concentration on the NOx reduction with ammonia over V2O5-WO3/TiO2 catalyst. Catalysis Today, 113, 208-214. DOI: 10.1016/j.cattod.2005.11.067.10.1016/j.cattod.2005.11.067Search in Google Scholar
Ferreira, A. P., Zanchet, D., Rinaldi, R., Schuchardt, U., Damyanova, S., & Bueno, J. M. C. (2010). Effect of the CeO2 content on the surface and structural properties of CeO2-Al2O3 mixed oxides prepared by sol-gel method. Applied Catalysis A: General, 388, 45-56. DOI: 10.1016/j.apcata.2010.08.033.10.1016/j.apcata.2010.08.033Search in Google Scholar
Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222, 221-236. DOI: 10.1016/s0926-860x(01)00832-8.10.1016/S0926-860X(01)00832-8Search in Google Scholar
Gao, X., Jiang, Y., Zhong, Y., Luo, Z. Y., & Cen, K. F. (2010a). The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 174, 734-739. DOI: 10.1016/j.jhazmat.2009.09.112.10.1016/j.jhazmat.2009.09.112Search in Google Scholar PubMed
Gao, X., Jiang, Y., Fu, Y. C., Zhong, Y., Luo, Z. Y., & Cen, K. F. (2010b). Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catalysis Communications, 11, 465-469. DOI: 10.1016/j.catcom.2009.11.024.10.1016/j.catcom.2009.11.024Search in Google Scholar
Gupta, A., Hegde, M. S., Priolkar, K. R., Waghmare, U. V., Sarode, P. R., & Emura, S. (2009). Structural investigation of activated lattice oxygen in Ce1−xSnxO2 and Ce1−x−ySnxPdyO2−δ by EXAFS and DFT calculation. Chemistry of Materials, 21, 5836-5847. DOI: 10.1021/ cm902466p.10.1021/cm902466pSearch in Google Scholar
Jing, L. Q., Xu, Z. L., Sun, X. J., Shang, J., & Cai, W. M. (2001). The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science, 180, 308-314. DOI: 10.1016/s0169-4332(01)00365-8.10.1016/S0169-4332(01)00365-8Search in Google Scholar
Lee, K. J., Maqbool, M. S., Kumar, P. A., Song, K. H., & Ha, H. P. (2013). Production from ilmenite of TiO2-supported catalysts for selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 39, 3265-3277. DOI: 10.1007/s11164-012-0838-9.10.1007/s11164-012-0838-9Search in Google Scholar
Li, L. D., Xue, B., Chen, J. X., Guan, N. J., Zhang, F. X., Liu, D. X., & Feng, H. Q. (2005). Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method. Applied Catalysis A: General, 292, 312-321. DOI: 10.1016/j.apcata.2005.06.015.10.1016/j.apcata.2005.06.015Search in Google Scholar
Li, J., Han, Y. X., Zhu, Y. H., & Zhou, R. X. (2011). Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 108-109, 72-80. DOI: 10.1016/j.apcatb.2011.08.010.10.1016/j.apcatb.2011.08.010Search in Google Scholar
Li, X. L., Li, Y. H., Deng, S. S., & Rong, T. A. (2013). A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3. Catalysis Communications, 40, 47-50. DOI: 10.1016/j.catcom.2013.05.024.10.1016/j.catcom.2013.05.024Search in Google Scholar
Liu, H. D., Wei, L. Q., Yue, R. L., & Chen, Y. F. (2010). CrOx- CeO2 binary oxide as a superior catalyst for NO reduction with NH3 at low temperature in presence of CO. Catalysis Communications, 11, 829-833. DOI: 10.1016/j.catcom.2010. 03.002.Search in Google Scholar
Liu, F. D., Asakura, K., He, H., Shan, W. P., Shi, X. Y., & Zhang, C. B. (2011). Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 103, 369-377. DOI: 10.1016/j.apcatb.2011.01.044.10.1016/j.apcatb.2011.01.044Search in Google Scholar
Liu, C. X., Chen, L., Chang, H. Z., Ma, L., Peng, Y., Arandiyan, H., & Li, J. H. (2013). Characterization of CeO2-WO3 catalysts prepared by different methods for selective catalytic reduction of NOx with NH3. Catalysis Communications, 40, 145-148. DOI: 10.1016/j.catcom.2013.06.017.10.1016/j.catcom.2013.06.017Search in Google Scholar
Liu, Z. M., Zhang, S. X., Li, J. H., & Ma, L. L. (2014). Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Applied Catalysis B: Environmental, 144, 90-95. DOI: 10.1016/j.apcatb.2013.06.036.10.1016/j.apcatb.2013.06.036Search in Google Scholar
Long, R. Q., & Yang, R. T. (1999). Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2- pillared clay catalysts. Journal of Catalysis, 186, 254-268. DOI: 10.1006/jcat.1999.2558.10.1006/jcat.1999.2558Search in Google Scholar
Ma, Z. R., Weng, D., Wu, X. D., Si, Z. C., & Wang, B. (2012). A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability. Catalysis Communications, 27, 97-100. DOI: 10.1016/j.catcom.2012.07.006.10.1016/j.catcom.2012.07.006Search in Google Scholar
Ma, L. N., Qu, H. X., Zhang, J., Tang, Q. S., Zhang, S. L., & Zhong, Q. (2013). Preparation of nanosheet Fe-ZSM-5 catalysts, and effect of Fe content on acidity, water, and sulfur resistance in the selective catalytic reduction of NOx by ammonia. Research on Chemical Intermediates, 39, 4109-4120. DOI: 10.1007/s11164-012-0927-9.10.1007/s11164-012-0927-9Search in Google Scholar
Martínez-Franco, R., Moliner, M., Franch, C., Kustov, A., & Corma, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280. DOI: 10.1016/j.apcatb.2012.08.034.10.1016/j.apcatb.2012.08.034Search in Google Scholar
Pantazis, C. C., Trikalitis, P. N., & Pomonis, P. J. (2005). Highly loaded and thermally stable Cu-containing mesoporous silica - Active catalyst for the NO + CO reaction. The Journal of Physical Chemistry B, 109, 12574-12581. DOI: 10.1021/jp0516689.10.1021/jp0516689Search in Google Scholar PubMed
Peng, Y., Li, K. Z., & Li, J. H. (2013). Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study. Applied Catalysis B: Environmental, 140-141, 483-492. DOI: 10.1016/j.apcatb.2013.04.043.10.1016/j.apcatb.2013.04.043Search in Google Scholar
Qu, R. Y., Gao, X., Cen, K. F., & Li, J. H. (2013). Relationship between structure and performance of a novel ceriumniobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 142, 290-297. DOI: 10.1016/j.apcatb.2013.05.035.10.1016/j.apcatb.2013.05.035Search in Google Scholar
Reddy Inturi, S. N., Boningari, T., Suidan, M., & Smirniotis, P. G. (2014). Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Applied Catalysis B: Environmental, 144, 333-342. DOI: 10.1016/j.apcatb.2013.07.032.10.1016/j.apcatb.2013.07.032Search in Google Scholar
Ruggeri, M. P., Grossale, A., Nova, I., Tronconi, E., Jirglova, H., & Sobalik, Z. (2012). FTIR in situ mechanistic study of the NH3-NO/NO2 “Fast SCR” reaction over a commercial Fe-ZSM-5 catalyst. Catalysis Today, 184, 107-114. DOI: 10.1016/j.cattod.2011.10.036.10.1016/j.cattod.2011.10.036Search in Google Scholar
Schneider, H., Scharf, U., Wokaun, A., & Baiker, A. (1994). Chromia on titania: IV. Nature of active sites for selective catalytic reduction of NO by NH3. Journal of Catalysis, 146, 545-556. DOI: 10.1006/jcat.1994.1093.10.1006/jcat.1994.1093Search in Google Scholar
Shan, W. P., Liu, F. D., He, H., Shi, X. Y., & Zhang, C. B. (2012). A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 115, 100-106. DOI: 10.1016/j.apcatb.2011.12.019.10.1016/j.apcatb.2011.12.019Search in Google Scholar
Worch, D., Suprun, W., & Gläser, R. (2014). Fe- and Cu-oxides supported on γ-Al2O3 as catalysts for the selective catalytic reduction of NO with ethanol. Part I: catalyst preparation, characterization, and activity. Chemical Papers, 68, 1228-1239. DOI: 10.2478/s11696-013-0533-3.10.2478/s11696-013-0533-3Search in Google Scholar
Wu, Z. B., Jin, R. B., Wang, H. Q., & Liu, Y. (2009). Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 10, 935-939. DOI: 10.1016/j.catcom.2008.12.032.10.1016/j.catcom.2008.12.032Search in Google Scholar
Yang, S. J.,Wang, C. Z., Li, J. H.,Yan,N.Q., Ma, L.,& Chang, H. Z. (2011). Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 110, 71-80. DOI: 10.1016/j.apcatb.2011.08.027.10.1016/j.apcatb.2011.08.027Search in Google Scholar
Zamaro, J. M., & Miró, E. E. (2010). Novel binderless zeolite-coated monolith reactor for environmental applications. Chemical Engineering Journal, 165, 701-708. DOI: 10.1016/j.cej.2010.10.014.10.1016/j.cej.2010.10.014Search in Google Scholar
Zhang, S. L., Li, H. Y., & Zhong, Q. (2012). Promotional effect of F-doped V2O5-WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Applied Catalysis A: General, 435-436, 156-162. DOI: 10.1016/j.apcata.2012.05.049 10.1016/j.apcata.2012.05.049Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Laser microsampling and multivariate methods in provenance studies of obsidian artefacts
- Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid–liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy
- Determination of formaldehyde by flow injection analysis with spectrophotometric detection exploiting brilliant green–sulphite reaction
- Passive sampling application to control air quality in interior of new vehicles
- Low-temperature enzymatic hydrolysis resolution in mini-emulsion media
- Performance and characterisation of CeO2–TiO2–WO3 catalysts for selective catalytic reduction of NO with NH3
- Catalytic wet peroxide oxidation of m-cresol over Fe/γ-Al2O3 and Fe–Ce/γ-Al2O3
- Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites
- A novel efficient magnetic core–zeolitic shell nanocatalyst system: preparation, characterization and activity
- Characterisation and coagulation performance of polysilicate–ferric–zinc
- Antioxidant activity of rosemary extracts in solution and embedded in polymeric systems
- Comparison of selected aroma compounds in cultivars of sea buckthorn (Hippophae rhamnoides L.)
- Thio-click approach to the synthesis of stable glycomimetics
- Synthesis of ether-linked [60]fullerene glycoconjugates by nucleophilic cyclopropanation
Articles in the same Issue
- Laser microsampling and multivariate methods in provenance studies of obsidian artefacts
- Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid–liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy
- Determination of formaldehyde by flow injection analysis with spectrophotometric detection exploiting brilliant green–sulphite reaction
- Passive sampling application to control air quality in interior of new vehicles
- Low-temperature enzymatic hydrolysis resolution in mini-emulsion media
- Performance and characterisation of CeO2–TiO2–WO3 catalysts for selective catalytic reduction of NO with NH3
- Catalytic wet peroxide oxidation of m-cresol over Fe/γ-Al2O3 and Fe–Ce/γ-Al2O3
- Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites
- A novel efficient magnetic core–zeolitic shell nanocatalyst system: preparation, characterization and activity
- Characterisation and coagulation performance of polysilicate–ferric–zinc
- Antioxidant activity of rosemary extracts in solution and embedded in polymeric systems
- Comparison of selected aroma compounds in cultivars of sea buckthorn (Hippophae rhamnoides L.)
- Thio-click approach to the synthesis of stable glycomimetics
- Synthesis of ether-linked [60]fullerene glycoconjugates by nucleophilic cyclopropanation