Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
-
Da-Wei Zhang
, Yu-Min Zhang , Yi-Liang Zhang , Tian-Qi Zhao , Hong-Wei Liu , Yuan-Ming Gan und Qiang Gu
Abstract
An efficient synthesis of bis(indolyl)methanes was developed. Bis(indolyl)methanes were synthesized starting from various aromatic aldehydes with indole under microwave irradiation and solvent-free conditions (85-98 %). Solid support SiO2 was found to possess favorable catalytic and dispersancy parameters for the condensation reaction. Moreover, novel bis(indolyl)methanes containing an isoxazole ring were synthesized via this method in excellent yields (> 94 %) using 3-substituted isoxazole-5-carbaldehydes and indole.
References
Angelin, M., Hermansson, M., Dong, H., & Ramstr¨om, O. (2006). Direct, mild, and selective synthesis of unprotected dialdo-glycosides. European Journal of Organic Chemistry, 19, 4323-4236. DOI: 10.1002/ejoc.200600288.10.1002/ejoc.200600288Suche in Google Scholar
Babu, G., Sridhar, N., & Perumal, P. T. (2000). A convenient method of synthesis of bis-indolylmethanes: Indium trichloride catalyzed reactions of indole with aldehydes and Schiff’s bases. Synthetic Communications, 30, 1609-1614. DOI: 10.1080/00397910008087197.10.1080/00397910008087197Suche in Google Scholar
Bandgar, B. P., & Shaikh, K. A. (2003). Molecular iodinecatalyzed efficient and highly rapid synthesis of bis(indolyl) methanes under mild conditions. Tetrahedron Letters, 44, 1959-1961. DOI: 10.1016/s0040-4039(03)00032-7.10.1016/S0040-4039(03)00032-7Suche in Google Scholar
Bandgar, B. P., Bettigeri, S. V., & Joshi, N. S. (2004). Hexamethylenetetraamine-bromine catalyzed rapid and efficient synthesis of bis(indolyl)methanes. Monatshefte f¨ur Chemie/Chemical Monthly, 135, 1265-1273. DOI: 10.1007/ s00706-004-0206-6.10.1007/s00706-004-0206-6Suche in Google Scholar
Bao, B. Q., Sun, Q. S., Yao, X. S., Hong, J. K., Lee, C. O., Sim, C. J., Im, K. S., & Jung, J. H. (2005). Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. Journal of Natural Products, 68, 711-715. DOI: 10.1021/np049577a.10.1021/np049577aSuche in Google Scholar
Basappa, Kumar, M. S., Swamy, S. N., Mahendra, M., Prasad, J. S., Viswanath, B. S., & Rangappa, K. S. (2004). Novel δ2-isoxazolines as group II phospholipase A2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 3679-3681. 10.1016/j.bmcl.2004.05.012.10.1016/j.bmcl.2004.05.012Suche in Google Scholar
Casapullo, A., Bifulco, G., Bruno, I., & Riccio, R. (2000). New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. Journal of Natural Products, 63, 447-451. DOI: 10.1021/np9903292.10.1021/np9903292Suche in Google Scholar
Chakrabarty, M., Ghosh, N., Basak, R., & Harigaya, Y. (2002). Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindoly lalkanes and vibrindole A. Tetrahedron Letters, 43, 4075-4078. DOI: 10.1016/s0040-4039(02)00682-2.10.1016/S0040-4039(02)00682-2Suche in Google Scholar
Chatterjee, A., Manna, S., Benerji, J., Pascard, C., Prange, T., & Shoolery, J. N. (1980). Lewis-acid-induced electrophilic substitution in lndoles with acetone. Part 2. Journal of the Chemical Society, Perkin Transactions 1, 1980, 553-555. DOI: 10.1039/p19800000553.10.1039/P19800000553Suche in Google Scholar
Chen, D. P., Yu, L. B., & Wang, P. G. (1996). Lewis acidcatalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Letters, 37, 4467-4470. DOI: 10.1016/0040-4039(96)00958-6.10.1016/0040-4039(96)00958-6Suche in Google Scholar
D’Auria, M. (1991). Photochemical synthesis of diindolylmethanes. Tetrahedron, 47, 9225-9230. DOI: 10.1016/s0040-4020(01)96210-6.10.1016/S0040-4020(01)96210-6Suche in Google Scholar
Deb, M. L., & Bhuyan, P. J. (2006). An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature. Tetrahedron Letters, 47, 1441-1443. DOI: 10.1016/j.tetlet.2005.12.093.10.1016/j.tetlet.2005.12.093Suche in Google Scholar
Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A. (2006). ZrOCl2 · 8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 253, 249-251. DOI: 10.1016/j.molcata.2006.03.043.10.1016/j.molcata.2006.03.043Suche in Google Scholar
Ghorbani-Vaghei, R., Veisi, H., Keypour, H., & Dehghani- Firouzabadi, A. A. (2010). A practical and efficient synthesis of bis(indolyl)methanes in water, and synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dihydrate. Molecular Diversity, 14, 87-96. DOI: 10.1007/s11030-009-9150-z.10.1007/s11030-009-9150-zSuche in Google Scholar
Gupta, L., Talwar, A., Nishi, Palne, S., Gupta, S., & Chauhan, P. M. S. (2007). Synthesis of marine alkaloid: 8,9-dihydrocoscinamide B and its analogues as novel class of antileishmanial agents. Bioorganic & Medicinal Chemistry Letters, 17, 4075-4079. DOI: 10.1016/j.bmcl.2007.04.035.10.1016/j.bmcl.2007.04.035Suche in Google Scholar
Hasaninejad, A., Zare, A., Sharghi, H., Niknam, K., & Shekouhy, M. (2007). P2O5/SiO2 as an efficient, mild, and heterogeneous catalytic system for the condensation of indoles with carbonyl compounds under solvent-free conditions. ARKIVOC, xiv, 39-50.10.3998/ark.5550190.0008.e06Suche in Google Scholar
Houlihan, W. J., Remers, W. A., & Brown, R. K. (1992). The chemistry of heterocyclic compounds. Indole, Part I. New York, NY, USA: Wiley.Suche in Google Scholar
Ji, S. J., Zhou, M. F., Gu, D. G., Wang, S. Y., & Loh, T. P. (2003). Efficient synthesis of bis(indolyl)methanes catalyzed by Lewis acids in ionic liquids. Synlett, 13, 2077-2079. DOI: 10.1055/s-2003-41464.10.1055/s-2003-41464Suche in Google Scholar
Ji, S. J., Zhou, M. F., Gu, D. G., Jiang, Z. Q., & Loh, T. P. (2004). Efficient FeIII-catalyzed synthesis of bis(indolyl)methanes in ionic liquids. European Journal of Organic Chemistry, 7, 1584-1587. DOI: 10.1002/ejoc.200300719.10.1002/ejoc.200300719Suche in Google Scholar
Kamal, A., & Qureshi, A. A. (1963). Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature. Tetrahedron, 19, 513-520. DOI: 10.1016/s0040-4020(01)98540-0.10.1016/S0040-4020(01)98540-0Suche in Google Scholar
Kamble, V. T., Kadam, K. R., Joshi, N. S., & Muley, D. B. (2007). HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bisindolylglycoconjugates. Catalysis Communications, 8, 498-502. DOI: 10.1016/j.catcom.2006.07.010.10.1016/j.catcom.2006.07.010Suche in Google Scholar
Kaniwa, K., Arai, M. A., Li, X. F., & Ishibashi, M. (2007). Synthesis, determination of stereochemistry, and evaluation of new bisindole alkaloids from the myxomycete Arcyria ferruginea: An approach for Wnt signal inhibitor. Bioorganic & Medicinal Chemistry Letters, 17, 4254-4257. DOI: 10.1016/j.bmcl.2007.05.033.10.1016/j.bmcl.2007.05.033Suche in Google Scholar
Karthik, M., Tripathi, A. K., Gupta, N. M., Palanichamy, M., & Murugesan, V. (2004). Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catalysis Communications, 5, 371-375. DOI: 10.1016/j.catcom.2004.04.007.10.1016/j.catcom.2004.04.007Suche in Google Scholar
Koshima, H., & Matsuaka, W. (2002). N-bromosuccinimide catalyzed condensations of indoles with carbonyl compounds under solvent-free conditions. Journal of Heterocyclic Chemistry, 39, 1089-1091. DOI: 10.1002/jhet.5570390539.10.1002/jhet.5570390539Suche in Google Scholar
Mendes, S. R., Thurow, S., Fortes, M. P., Penteado, F., Lenard˘ao, E. J., Alves, D., Perin, G., & Jacob, R. G. (2012). Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface. Tetrahedron Letters, 53, 5402-5406. DOI: 10.1016/j.tetlet.2012.07.118.10.1016/j.tetlet.2012.07.118Suche in Google Scholar
Mi, X. L., Luo, S. Z., He, J. Q., & Chen, J. P. (2004). Dy(OTf)3 in ionic liquid: an efficient catalytic system for reactions of indole with aldehydes/ketones or imines. Tetrahedron Letters, 45, 4567-4570. DOI: 10.1016/j.tetlet.2004.04.039.10.1016/j.tetlet.2004.04.039Suche in Google Scholar
Miller, R. A., & Hoerrner, R. S. (2003). Iodine as a chemoselective reoxidant of TEMPO: Application to the oxidation of alcohols to aldehydes and ketones. Organic Letters, 5, 285-287. DOI: 10.1021/ol0272444.10.1021/ol0272444Suche in Google Scholar
Nagarajan, R., & Perumal, P. T. (2002). InCl3 and In(OTf)3 catalyzed reaction: synthesis of 3-acetylindoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron, 58, 1229-1232. DOI: 10.1016/s0040-4020(01)01227-3.10.1016/S0040-4020(01)01227-3Suche in Google Scholar
Noland,W. E., Venkiteswaran, M. R., & Richards, C. G. (1961). Cyclizative condensations. 1. 2-methylindole with acetone and methyl ethyl ketone. Journal of Organic Chemistry, 26, 4241-4248. DOI: 10.1021/jo01069a017.10.1021/jo01069a017Suche in Google Scholar
Pastor, J., Alcazar, J., Alvarez, R. M., Andres, J. I., Cid, J. M., De Lucas, A. I., Diaz, A., Fernandez, J., Font, L. M., Iturrino, L., Lafuente, C., Martinez, S., Bakker, M. H., Biesmans, I., Heylen, L. I., & Megens, A. A. (2004). Synthesis of 3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazoles, displaying combined 5-HT uptake inhibiting and α2-adrenoceptor antagonistic activities. Part 2: Further exploration on the cinnamyl moiety. Bioorganic & Medicinal Chemistry Letters, 14, 2917-2725. DOI: 10.1016/j.bmcl.2004.03.031.10.1016/j.bmcl.2004.03.031Suche in Google Scholar PubMed
Ramesh, C., Benerjee, J., Pal, R., & Das, B. (2003). Silica supported sodium hydrogen sulfate and Amberlyst-15: Two efficient heterogeneous catalysts for facile synthesis of bis- and tris(1H-indol-3-yl)methanes from indoles and carbonyl compounds. Advanced Synthesis & Catalysis, 345, 557-559. DOI: 10.1002/adsc.200303022.10.1002/adsc.200303022Suche in Google Scholar
Reddy, A. V., Ravinder, K., Reddy, V. L. N., Goud, T. V., Ravikanth, V., & Venkateswarlu, Y. (2003). Zeolite catalyzed synthesis of bis(indolyl) methanes. Synthetic Communications, 33, 3687-3694. DOI: 10.1081/scc-120025177.10.1081/SCC-120025177Suche in Google Scholar
Roomi, M. W., & MacDonald, S. F. (1970). Reductive Calkylation. II. Canadian Journal of Chemistry, 48, 139-143. DOI: 10.1139/v70-019.10.1139/v70-019Suche in Google Scholar
Sadaphal, S. A., Kategaonkar, A. H., Labade, V. B., & Shingare, M. S. (2010). Synthesis of bis(indolyl) methanes using aluminium oxide (acidic) in dry media. Chinese Chemical Letters, 21, 39-42. DOI: 10.1016/j.cclet.2009.07.010.10.1016/j.cclet.2009.07.010Suche in Google Scholar
Shen, C. S., Zhang, Y. M., Gan, Y. M., Zhao, T. Q., & Gu, Q. (2011). One-pot synthesis of (3-phenylisoxazol-5-yl)methanol derivatives under ultrasound. Letters in Organic Chemistry, 8, 278-281. DOI: 10.2174/157017811795371467.10.2174/157017811795371467Suche in Google Scholar
Shirini, F., Langroodi, M. S., & Abedini, M. (2010). Efficient synthesis of bis (indolyl) methanes catalyzed by (PhCH2P Ph3)+Br− 3 under solvent-free conditions. Chinese Chemical Letters, 21, 1342-1345. DOI: 10.1016/j.cclet.2010.05.028.10.1016/j.cclet.2010.05.028Suche in Google Scholar
Skibo, E. B., Xing, C., & Dorr, R. T. (2001). Aziridinyl quinone antitumor agents based on indoles and cyclopent[b]indoles: Structure-activity relationships for cytotoxicity and antitumor activity. Journal of Medicinal Chemistry, 44, 3545-3562. DOI: 10.1021/jm010085u. 10.1021/jm010085uSuche in Google Scholar PubMed
Sundberg, R. J. (1996). Synthetic modification of indoles by substitution at nitrogen. The chemistry of indole. New York, NY, USA: Academic Press. Suche in Google Scholar
Wagner, E., Becan, L., & Nowakowska, E. (2004). Synthesis and pharmacological assessment of derivatives of isoxazolo[4,5- d]pyrimidine. Bioorganic & Medicinal Chemistry, 12, 265-272. DOI: 10.1016/j.bmc.2003.10.004.10.1016/j.bmc.2003.10.004Suche in Google Scholar PubMed
Wang, Y. M., Wen, Z., Chen, X. M., Du, D. M., Matsuura, T., & Meng, J. B. (1998). Research on photochemical and thermochemical reactions between indole and quinones in the absence of solvent. Journal of Heterocyclic Chemistry, 35, 313-316. DOI: 10.1002/jhet.5570350209.10.1002/jhet.5570350209Suche in Google Scholar
Wang, L. M., Han, J. W., Tian, H., Sheng, J., Fan, Z. Y., & Tang, X. P. (2005). Rare earth perfluoroodanoate [RE(PFO)(3)]-catalyzed condensations of indole with carbonyl compounds. Synlett, 2005, 337-339. DOI: 10.1055/s-2004-837210.10.1055/s-2004-837210Suche in Google Scholar
Wang, S. Y., & Ji, S. J. (2008). Facile synthesis of bis(indolyl) methanes catalyzed by ferric dodecyl sulfonate [Fe(DS)3] in water at room temperature. Synthetic Communications, 38, 1291-1298. DOI: 10.1080/00397910701873318.10.1080/00397910701873318Suche in Google Scholar
Yadav, J. S., Reddy, B. V. S., Murthy, C. V. S. R., Kumar, G. M., & Madan, C. (2001). Lithium perchlorate catalyzed reactions of indoles: An expeditious synthesis of bis(indolyl)methanes [1]. Synthesis, 2001, 783-787. DOI: 10.1055/s-2001-12777.10.1055/s-2001-12777Suche in Google Scholar
Yadav, J. S., Reddy, B. V. S., & Sunitha, S. (2003). Efficient and eco-friendly process for the synthesis of bis(1H-indol-3- yl)methanes using ionic liquids. Advanced Synthesis & Catalysis, 345, 349-352. DOI: 10.1002/adsc.200390038.10.1002/adsc.200390038Suche in Google Scholar
Zhang, C. L., & Du, Z. Q. (2009). Synthesis of bis-indolylmethanes catalyzed by oxone. Chinese Chemical Letters, 20, 1411-1414. DOI: 10.1016/j.cclet.2009.06.021. 10.1016/j.cclet.2009.06.021Suche in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
- Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
- Determination of cigarette papers moisture content by gas chromatography
- Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
- Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
- Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
- Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
- Dissolution kinetics of cerussite in an alternative leaching reagent for lead
- Preparation of quaternary pyridinium salts as possible proton conductors
- Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
- Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
- Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
- Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
- Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
- Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water
Artikel in diesem Heft
- One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
- Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
- Determination of cigarette papers moisture content by gas chromatography
- Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
- Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
- Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
- Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
- Dissolution kinetics of cerussite in an alternative leaching reagent for lead
- Preparation of quaternary pyridinium salts as possible proton conductors
- Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
- Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
- Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
- Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
- Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
- Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water