Startseite Medizin Kappa Index predicts disease activity and transition to high-efficacy therapies in multiple sclerosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kappa Index predicts disease activity and transition to high-efficacy therapies in multiple sclerosis

  • Simone Marcheselli , Federica Galota , Patrizia Natali ORCID logo , Francesco Corrado , Alessia Fiore , Francesca Vitetta , Krzysztof Smolik , Giulia De Napoli , Martina Cardi und Diana Ferraro ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. Dezember 2025

Abstract

Objectives

The Kappa Index has proven its diagnostic value for multiple sclerosis (MS), while its prognostic potential remains to be fully explored. The objective of this study is thus to investigate the value of the Kappa Index at disease onset in predicting disease activity and high-efficacy therapy (HET) initiation.

Methods

We enrolled MS patients with available Kappa Index values at disease onset and a follow-up of at least two years. Primary outcome was the time to loss of NEDA3 (no evidence of disease activity-3) defined as the absence of relapses, MRI activity, and disability progression. Secondary outcome was the time to HET initiation.

Results

Of 120 enrolled patients (36 M, 84 F, mean age: 35 ± 11 years), NEDA3 loss occurred in 89 (74 %) by the end of the follow-up period. A total of 98 (82 %) initiated a moderate efficacy therapy (MET); of these, 34 (28 %) transitioned to a HET during follow-up. Kappa Index values above the maximally selected log-rank statistic-derived cut-off of 38 were independent risk factors for NEDA3 loss (HR 1.75, 95 % CI: 1.09–2.80, p=0.021) and HET initiation (3.25, 95 % CI: 1.54–6.87, p=0.002) and also independently predicted HET following MET failure (2.54, 95 % CI: 1.17–5.51, p=0.018).

Conclusions

Elevated Kappa Index values at diagnosis predict disease activity, MET failure and HET initiation and may be a valuable adjunctive tool in identifying patients in need of prompt HET initiation.


Corresponding author: Diana Ferraro, Azienda Ospedaliero-Universitaria di Modena Ospedale Civile di Baggiovara, Neurology Unit, Via Pietro Giardini, 1355, Baggiovara, Modena, 41126, Italy, E-mail:

  1. Research ethics: This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Area Vasta Emilia Nord Research Ethics Committee (approval no. 0035240/24) on December 11, 2024.

  2. Informed consent: Participants signed the relevant written informed consent for participation in the study, in the form approved by the Area Vasta Emilia Nord Ethical Committee.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization, D.F.; methodology, D.F.; software, S.M.; validation, D.F.; investigation, S.M.; data curation, A.F., K.S, G.D.N, F.G., M.C., F.V., S.M., F.C., P.N.; writing – original draft preparation, S.M., writing – review and editing, D.F., A.F., K.S., G.D.N., F.G., M.C., P.N., F.V. and F.C.; visualization, D.F.; supervision, D.F. All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: D.F. has received travel grants and/or honoraria for speaking or advisory boards from Binding Site, which own the Optilite and Freelite assays used in this study, and from Alexion, Biogen, Merck, Novartis, Roche, Sanofi, which own the patent to the different MS drugs evaluated in this study. D.F. has also received travel grants and honoraria for speaking from Bristol-Myers-Squibb and Neuraxpharm. F.G. has received eraria for speaking from Alexion. F.V., S.M., F.C., P.N., A.F., K.S., G.D.N. and M.C. have nothing to disclose.

  6. Research funding: None declared.

  7. Data availability: The data that support the findings of this study will be made available from the corresponding author, D.F., upon reasonable request.

References

1. Hegen, H, Walde, J, Berek, K, Arrambide, G, Gnanapavan, S, Kaplan, B, et al.. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: a systematic review and meta-analysis. Mult Scler 2023;29:169–81. https://doi.org/10.1177/13524585221134213.Suche in Google Scholar

2. Hegen, H, Arrambide, G, Gnanapavan, S, Kaplan, B, Khalil, M, Saadeh, R, et al.. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: a consensus statement. Mult Scler 2023;29:182–95. https://doi.org/10.1177/13524585221134217.Suche in Google Scholar

3. Arrambide, G, Espejo, C, Carbonell-Mirabent, P, Dieli-Crimi, R, Rodríguez-Barranco, M, Castillo, M, et al.. The kappa free light chain index and oligoclonal bands have a similar role in the McDonald criteria. Brain 2022;145:3931–42. https://doi.org/10.1093/brain/awac220.Suche in Google Scholar

4. Levraut, M, Gavoille, A, Landes-Chateau, C, Cohen, M, Bresch, S, Seitz-Polski, B, et al.. Kappa free light chain index predicts disease course in clinically and radiologically isolated syndromes. Neurol Neuroimmunol Neuroinflamm 2023;10:e200156. https://doi.org/10.1212/nxi.0000000000200156.Suche in Google Scholar

5. Ferraro, D, Trovati, A, Bedin, R, Natali, P, Franciotta, D, Santangelo, M, et al.. Cerebrospinal fluid kappa and lambda free light chains in oligoclonal band‐negative patients with suspected multiple sclerosis. Eur J Neurol 2020;27:461–7. https://doi.org/10.1111/ene.14121.Suche in Google Scholar

6. Ferraro, D, Bedin, R, Natali, P, Franciotta, D, Smolik, K, Santangelo, M, et al.. Kappa index versus CSF oligoclonal bands in predicting multiple sclerosis and infectious/inflammatory CNS disorders. Diagnostics 2020;10:856. https://doi.org/10.3390/diagnostics10100856.Suche in Google Scholar

7. Montalban, X, Lebrun-Frénay, C, Oh, J, Arrambide, G, Moccia, M, Amato, MP, et al.. Diagnosis of multiple sclerosis: 2024 revisions of the McDonald criteria. Lancet Neurol 2025;24:850–65. https://doi.org/10.1016/s1474-4422(25)00270-4.Suche in Google Scholar

8. Hegen, H, Berek, K, Deisenhammer, F. Cerebrospinal fluid kappa free light chains as biomarker in multiple sclerosis–from diagnosis to prediction of disease activity. Wien Med Wochenschr 2022;172:337–45. https://doi.org/10.1007/s10354-022-00912-7.Suche in Google Scholar

9. Rosenstein, I, Axelsson, M, Novakova, L, Malmeström, C, Blennow, K, Zetterberg, H, et al.. Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing–remitting multiple sclerosis. J Neurol 2023;270:4800–11. https://doi.org/10.1007/s00415-023-11817-9.Suche in Google Scholar

10. Castillo-Villalba, J, Gil-Perotín, S, Gasque-Rubio, R, Cubas-Nuñez, L, Carratalà-Boscà, S, Alcalá, C, et al.. High levels of cerebrospinal fluid kappa free light chains relate to IgM intrathecal synthesis and might have prognostic implications in relapsing multiple sclerosis. Front Immunol 2022;13:827738. https://doi.org/10.3389/fimmu.2022.827738.Suche in Google Scholar

11. Deisenhammer, F, Hegen, H, Arrambide, G, Banwell, BL, Coetzee, T, Gnanapavan, S, et al.. Positive cerebrospinal fluid in the 2024 McDonald criteria for multiple sclerosis. EBioMedicine 2025;120:105905. https://doi.org/10.1016/j.ebiom.2025.105905.Suche in Google Scholar

12. Moreno-Navarro, L, Mora-Diaz, S, Ruiz-Escribano-Menchen, L, Sempere, AP. Kappa free light chain index as a diagnostic and prognostic biomarker in multiple sclerosis. J Neurol 2025;272:646. https://doi.org/10.1007/s00415-025-13381-w.Suche in Google Scholar

13. Rosenstein, I, Axelsson, M, Novakova, L, Rasch, S, Blennow, K, Zetterberg, H, et al.. High levels of kappa free light chain synthesis predict cognitive decline in relapsing-remitting multiple sclerosis. Front Immunol 2023;14:1106028. https://doi.org/10.3389/fimmu.2023.1106028.Suche in Google Scholar

14. Gaetani, L, Salvadori, N, Brachelente, G, Sperandei, S, Di Sabatino, E, Fiacca, A, et al.. Intrathecal B cell activation and memory impairment in multiple sclerosis. Mult Scler Relat Disord 2024;85:105548. https://doi.org/10.1016/j.msard.2024.105548.Suche in Google Scholar

15. Virgilio, E, Ciampana, V, Puricelli, C, Naldi, P, Bianchi, A, Dianzani, U, et al.. Biomarkers of intrathecal synthesis may be associated with cognitive impairment at MS diagnosis. IJMS 2025;26:826. https://doi.org/10.3390/ijms26020826.Suche in Google Scholar

16. Damulina, A, Opriessnig, P, Pirpamer, L, Demjaha, R, Tafrali, C, Martinez-Serrat, M, et al.. Association of CSF kappa-free light chains with cortical and periventricular brain damage in multiple sclerosis. Neurology 2025;105:e214433. https://doi.org/10.1212/wnl.0000000000214433.Suche in Google Scholar

17. Tortosa-Carreres, J, Cubas-Núñez, L, Quiroga-Varela, A, Castillo-Villalba, J, Ramió-Torrenta, L, Piqueras, M, et al.. Predictive potential of serum and cerebrospinal fluid biomarkers for disease activity in treated multiple sclerosis patients. Mult Scler Relat Disord 2024;88:105734. https://doi.org/10.1016/j.msard.2024.105734.Suche in Google Scholar

18. Samjoo, IA, Worthington, E, Drudge, C, Zhao, M, Cameron, C, Häring, DA, et al.. Efficacy classification of modern therapies in multiple sclerosis. J Comp Eff Res 2021;10:495–507. https://doi.org/10.2217/cer-2020-0267.Suche in Google Scholar

19. Rotstein, D, Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol 2019;15:287–300. https://doi.org/10.1038/s41582-019-0170-8.Suche in Google Scholar

20. Simoens, S. Societal economic burden of multiple sclerosis and cost-effectiveness of disease-modifying therapies. Front Neurol 2022;13:1015256. https://doi.org/10.3389/fneur.2022.1015256.Suche in Google Scholar

21. Dobson, R, Giovannoni, G. Multiple sclerosis – a review. Eur J Neurol 2019;26:27–40. https://doi.org/10.1111/ene.13819.Suche in Google Scholar

22. Filippi, M, Danesi, R, Derfuss, T, Duddy, M, Gallo, P, Gold, R, et al.. Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis. J Neurol 2022;269:1670–7. https://doi.org/10.1007/s00415-021-10836-8.Suche in Google Scholar

23. Selmaj, K, Cree, BAC, Barnett, M, Thompson, A, Hartung, HP. Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol 2024;271:105–15. https://doi.org/10.1007/s00415-023-11969-8.Suche in Google Scholar

24. Lu, G, Beadnall, HN, Barton, J, Hardy, TA, Wang, C, Barnett, MH. The evolution of “no evidence of disease activity” in multiple sclerosis. Mult Scler Relat Disord 2018;20:231–8. https://doi.org/10.1016/j.msard.2017.12.016.Suche in Google Scholar

25. Thompson, AJ, Banwell, BL, Barkhof, F, Carroll, WM, Coetzee, T, Comi, G, et al.. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73. https://doi.org/10.1016/s1474-4422(17)30470-2.Suche in Google Scholar

26. Lebrun-Frénay, C, Okuda, DT, Siva, A, Landes-Chateau, C, Azevedo, CJ, Mondot, L, et al.. The radiologically isolated syndrome: revised diagnostic criteria. Brain 2023;146:3431–43. https://doi.org/10.1093/brain/awad073.Suche in Google Scholar

27. Berek, K, Bsteh, G, Auer, M, Di Pauli, F, Grams, A, Milosavljevic, D, et al.. Kappa-free light chains in CSF predict early multiple sclerosis disease activity. Neurol Neuroimmunol Neuroinflamm 2021;8:e1005. https://doi.org/10.1212/nxi.0000000000001005.Suche in Google Scholar

28. Berek, K, Schmidauer, M, Bsteh, G, Auer, M, Barket, R, Berger, T, et al.. Kappa free light chain index predicts long-term disease activity and disability accrual in multiple sclerosis. Mult Scler J 2025;31:1187–94. https://doi.org/10.1177/13524585251344807.Suche in Google Scholar

29. Cutellè, C, Balducci, C, Cereda, D, Fusco, ML, Iacobucci, D, Perugini, J, et al.. K index utility as diagnostic and prognostic biomarker in the assessment of patients with suspected multiple sclerosis. J Neuroimmunol 2022;373:577992. https://doi.org/10.1016/j.jneuroim.2022.577992.Suche in Google Scholar

30. Rocca, MA, Preziosa, P, Barkhof, F, Brownlee, W, Calabrese, M, De Stefano, N, et al.. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg Health Eur 2024;44:100978. https://doi.org/10.1016/j.lanepe.2024.100978.Suche in Google Scholar

31. Tiu, VE, Enache, I, Panea, CA, Tiu, C, Popescu, BO. Predictive MRI biomarkers in MS – a critical review. Medicina 2022;58:377. https://doi.org/10.3390/medicina58030377.Suche in Google Scholar

32. Ayrignac, X, Bigaut, K, Pelletier, J, De Seze, J, Demortiere, S, Collongues, N, et al.. First line treatment failure: predictive factors in a cohort of 863 relapsing remitting MS patients. Mult Scler Relat Disord 2021;48:102686. https://doi.org/10.1016/j.msard.2020.102686.Suche in Google Scholar

33. Galota, F, Marcheselli, S, De Biasi, S, Gibellini, L, Vitetta, F, Fiore, A, et al.. Impact of high-efficacy therapies for multiple sclerosis on B cells. Cells 2025;14:606. https://doi.org/10.3390/cells14080606.Suche in Google Scholar

34. Di Filippo, M, Gaetani, L, Centonze, D, Hegen, H, Kuhle, J, Teunissen, CE, et al.. Fluid biomarkers in multiple sclerosis: from current to future applications. Lancet Reg Health Eur 2024;44:101009. https://doi.org/10.1016/j.lanepe.2024.101009.Suche in Google Scholar

35. Carlson, AK, Amin, M, Cohen, JA. Drugs targeting CD20 in multiple sclerosis: pharmacology, efficacy, safety, and tolerability. Drugs 2024;84:285–304. https://doi.org/10.1007/s40265-024-02011-w.Suche in Google Scholar

36. Di Sabatino, E, Ferraro, D, Gaetani, L, Emiliano, E, Parnetti, L, Di Filippo, M. CSF biomarkers of B-cell activation in multiple sclerosis: a clinical perspective. J Neurol 2025;272:211. https://doi.org/10.1007/s00415-025-12907-6.Suche in Google Scholar

37. Smolik, K, Bedin, R, Natali, P, Cardi, M, Franciotta, D, Simone, AM, et al.. Elevated kappa index in the absence of cerebrospinal fluid IgG oligoclonal bands: contribution of intrathecal IgM and IgA synthesis. Biomolecules 2025;15:90. https://doi.org/10.3390/biom15010090.Suche in Google Scholar

38. Duell, F, Högelin, KA, Vlad, B, Neidhart, S, Khademi, M, Jelcic, I, et al.. Kappa free light chain index correlates with prognostic biomarkers in multiple sclerosis and decreases slowly following treatment. Eur J Neurol 2025;32:e70291. https://doi.org/10.1111/ene.70291.Suche in Google Scholar

39. Schmierer, K, Wiendl, H, Barkhof, F, Montalban, X, Achiron, A, Derfuss, T, et al.. Clinical and mechanistic effects of cladribine in relapsing multiple sclerosis: 2-year results from the MAGNIFY-MS study. Ther Adv Neurol Disord 2025;18. https://doi.org/10.1177/17562864251351760.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/cclm-2025-1339).


Received: 2025-10-12
Accepted: 2025-12-15
Published Online: 2025-12-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2025-1339/html
Button zum nach oben scrollen