Home Comparison of six regression-based lot-to-lot verification approaches
Article
Licensed
Unlicensed Requires Authentication

Comparison of six regression-based lot-to-lot verification approaches

  • Norman Wen Xuan Koh , Corey Markus ORCID logo , Tze Ping Loh EMAIL logo and Chun Yee Lim
Published/Copyright: May 16, 2022

Abstract

Objectives

Detection of between-lot reagent bias is clinically important and can be assessed by application of regression-based statistics on several paired measurements obtained from the existing and new candidate lot. Here, the bias detection capability of six regression-based lot-to-lot reagent verification assessments, including an extension of the Bland–Altman with regression approach are compared.

Methods

Least squares and Deming regression (in both weighted and unweighted forms), confidence ellipses and Bland–Altman with regression (BA-R) approaches were investigated. The numerical simulation included permutations of the following parameters: differing result range ratios (upper:lower measurement limits), levels of significance (alpha), constant and proportional biases, analytical coefficients of variation (CV), and numbers of replicates and sample sizes. The sample concentrations simulated were drawn from a uniformly distributed concentration range.

Results

At a low range ratio (1:10, CV 3%), the BA-R performed the best, albeit with a higher false rejection rate and closely followed by weighted regression approaches. At larger range ratios (1:1,000, CV 3%), the BA-R performed poorly and weighted regression approaches performed the best. At higher assay imprecision (CV 10%), all six approaches performed poorly with bias detection rates <50%. A lower alpha reduced the false rejection rate, while greater sample numbers and replicates improved bias detection.

Conclusions

When performing reagent lot verification, laboratories need to finely balance the false rejection rate (selecting an appropriate alpha) with the power of bias detection (appropriate statistical approach to match assay performance characteristics) and operational considerations (number of clinical samples and replicates, not having alternate reagent lot).


Corresponding author: Tze Ping Loh, Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, 119074 Singapore, Singapore, Phone: (+65) 67724345, Fax: (+65) 67771613, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Not acceptable.

  5. Ethical approval: Not acceptable.

References

1. Algeciras-Schimnich, A, Bruns, DE, Boyd, JC, Bryant, SC, La Fortune, KA, Grebe, SK. Failure of current laboratory protocols to detect lot-to-lot reagent differences: findings and possible solutions. Clin Chem 2013;59:1187–94. https://doi.org/10.1373/clinchem.2013.205070.Search in Google Scholar PubMed

2. Loh, TP, Lee, LC, Sethi, SK, Deepak, DS. Clinical consequences of erroneous laboratory results that went unnoticed for 10 days. J Clin Pathol 2013;66:260–1. https://doi.org/10.1136/jclinpath-2012-201165.Search in Google Scholar PubMed

3. Bais, R, Chesher, D. More on lot-to-lot changes. Clin Chem 2014;60:413–4. https://doi.org/10.1373/clinchem.2013.215111.Search in Google Scholar PubMed

4. Liu, J, Tan, CH, Loh, TP, Badrick, T. Detecting long-term drift in reagent lots. Clin Chem 2015;61:1292–8. https://doi.org/10.1373/clinchem.2015.242511.Search in Google Scholar PubMed

5. Chen, X, Wang, J, Zhang, W, Xie, E, Zhang, B, Xu, HG. Failure of internal quality control in detecting significant reagent lot shift in serum creatinine measurement. J Clin Lab Anal 2019;33:e22991. https://doi.org/10.1002/jcla.22991.Search in Google Scholar PubMed PubMed Central

6. Clinical and Laboratory Standards Institute. User evaluation of between-reagent lot variation; approved guideline CLSI document EP26-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.Search in Google Scholar

7. Mazzo, DJ, Connolly, M. Analytical method comparison based upon statistical power calculations. Pharm Res (NY) 1992;9:601–6. https://doi.org/10.1023/a:1015885607013.10.1023/A:1015885607013Search in Google Scholar

8. Linnet, K. Necessary sample size for method comparison studies based on regression analysis. Clin Chem 1999;45:882–94. https://doi.org/10.1093/clinchem/45.6.882.Search in Google Scholar

9. Thompson, S, Chesher, D. Lot-to-lot variation. Clin Biochem Rev 2018;39:51–60.Search in Google Scholar

10. Draper, NR, Smith, H. Applied regression analysis. Hoboken, New Jersey: Wiley; 1998.10.1002/9781118625590Search in Google Scholar

11. Sadler, WA. Joint parameter confidence regions improve the power of parametric regression in method-comparison studies. Accred Qual Assur 2010;15:547–54. https://doi.org/10.1007/s00769-010-0674-9.Search in Google Scholar

12. Mendenhall, WM, Sincich, TL. Statistics for engineering and the science. London: CRC Press LLC; 2016.10.1201/b19628Search in Google Scholar

13. Plebani, M, Zaninotto, M. Lot-to-lot variation: no longer a neglected issue. Clin Chem Lab Med 2022;60:645–6. https://doi.org/10.1515/cclm-2022-0128.Search in Google Scholar PubMed

14. van Schrojenstein Lantman, M, Çubukçu, HC, Boursier, G, Panteghini, M, Bernabeu-Andreu, FA, Milinkovic, N, et al.. An approach for determining allowable between reagent lot variation. Clin Chem Lab Med 2022;60:681–8. https://doi.org/10.1515/cclm-2022-0083.Search in Google Scholar PubMed

15. Giavarina, D. Understanding Bland Altman analysis. Biochem Med 2015;25:141–51. https://doi.org/10.11613/bm.2015.015.Search in Google Scholar PubMed PubMed Central

16. Loh, TP, Sandberg, S, Horvath, AR. Lot-to-lot reagent verification: challenges and possible solutions. Clin Chem Lab Med 2022;60:675–80. https://doi.org/10.1515/cclm-2022-0092.Search in Google Scholar PubMed

17. Tan, RZ, Punyalack, W, Graham, P, Badrick, T, Loh, TP. Detecting reagent lot shifts using proficiency testing data. Pathology 2019;51:711–7. https://doi.org/10.1016/j.pathol.2019.08.002.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/cclm-2022-0274).


Received: 2022-03-22
Accepted: 2022-04-29
Published Online: 2022-05-16
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Transdermal measurement of cardiac troponins: the future is now
  4. Reviews
  5. Perinatal presepsin assessment: a new sepsis diagnostic tool?
  6. Hypertriglyceridemia, a causal risk factor for atherosclerosis, and its laboratory assessment
  7. Opinion Paper
  8. The novelties of the regulation on health technology assessment, a key achievement for the European union health policies
  9. General Clinical Chemistry and Laboratory Medicine
  10. Performance of four regression frameworks with varying precision profiles in simulated reference material commutability assessment
  11. Comparison of six regression-based lot-to-lot verification approaches
  12. Failure Mode and Effects Analysis (FMEA) at the preanalytical phase for POCT blood gas analysis: proposal for a shared proactive risk analysis model
  13. Evaluation of a pneumatic tube system carrier prototype with fixing mechanism allowing for automated unloading
  14. Analytical performance of eight enzymatic assays for ethanol in serum evaluated by data from the Belgian external quality assessment scheme
  15. Vitamin D metabolism in living kidney donors before and after organ donation
  16. Validation of steroid ratios for random urine by mass spectrometry to detect 5α-reductase deficiency in Vietnamese children
  17. Evaluation of serum neurofilament light in the early management of mTBI patients
  18. Assessment of urine sample quality by the simultaneous measurement of urinary γ-glutamyltransferase and lactate dehydrogenase enzyme activities: possible application to unravel cheating in drugs of abuse testing
  19. Reference Values and Biological Variations
  20. Age and sex specific reference intervals of 13 hematological analytes in Chinese children and adolescents aged from 28 days up to 20 years: the PRINCE study
  21. Cancer Diagnostics
  22. Prostate health index (PHI) as a reliable biomarker for prostate cancer: a systematic review and meta-analysis
  23. A comparison of the faecal haemoglobin concentrations and diagnostic accuracy in patients suspected with colorectal cancer and serious bowel disease as reported on four different faecal immunochemical test systems
  24. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form
  25. Cardiovascular Diseases
  26. Analytical and clinical performance evaluation of a new high-sensitivity cardiac troponin I assay
  27. Infectious Diseases
  28. Results of a SARS-CoV-2 virus genome detection external quality assessment round focusing on sensitivity of assays and pooling of samples
  29. Letters to the Editors
  30. Improving D-dimer testing appropriateness by controlling periodicity of retesting: prevention is better than cure
  31. Biological variation of serum cholinesterase catalytic concentrations
  32. Three-month ad interim analysis of total anti-SARS-CoV-2 antibodies in healthy recipient of a single BNT162b2 vaccine booster
  33. Fibrin strands in peripheral blood smear: the COVID-19 era
  34. Fragments of alpha-1-antitrypsin in patients with severe COVID-19 and bacterial pulmonary sepsis
  35. Comparison of thyroid stimulating hormone, free thyroxine, total triiodothyronine, thyroglobulin and peroxidase antibodies measurements by two different platforms
  36. Effect of different incubation times on the detection of factor VIII inhibitor in acquired hemophilia A
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2022-0274/html
Scroll to top button