Startseite Utility of procalcitonin for differentiating cryptogenic organising pneumonia from community-acquired pneumonia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Utility of procalcitonin for differentiating cryptogenic organising pneumonia from community-acquired pneumonia

  • Akihiro Ito EMAIL logo , Tadashi Ishida , Hiromasa Tachibana , Machiko Arita , Akio Yamazaki und Yasuyoshi Washio
Veröffentlicht/Copyright: 23. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Background

This study aimed to investigate the usefulness of inflammatory biomarkers such as white blood cell (WBC) count, C-reactive protein (CRP) and procalcitonin (PCT) for differentiating cryptogenic organising pneumonia (COP) from community-acquired pneumonia (CAP).

Methods

COP patients hospitalised in Kurashiki Central Hospital between January 2010 and December 2017 whose WBC counts and CRP and PCT levels were measured were investigated retrospectively, and their results were compared with those of hospitalised CAP patients who were prospectively enrolled between October 2010 and November 2017. Definite COP was defined by specific histopathological findings, and possible COP was defined as a consolidation shadow on chest computed tomography and lymphocyte dominance in bronchoalveolar lavage fluid in the absence of specific histopathological findings or lung specimens. The discriminatory abilities of WBC counts, CRP and PCT were evaluated by receiver operating characteristic (ROC) curve analysis.

Results

There were 56 patients in the entire COP group, 35 (61.4%) with definite COP, and 914 CAP patients. All three biomarkers were significantly lower in COP than in CAP. The AUC value of PCT in all COP patients was 0.79, significantly higher than of both CRP (AUC 0.59, p < 0.001) and WBC (AUC 0.69, p = 0.048). In definite COP patients, the AUC value of PCT was 0.79, which was also significantly higher than of both WBC (AUC 0.64, p = 0.006) and CRP (AUC 0.64, p = 0.001).

Conclusions

PCT is a more useful biomarker for differentiating COP from CAP than WBC count or CRP. However, PCT should be used as an adjunct to clinical presentation and radiological findings.

Acknowledgments

The authors would like to thank all of their colleagues who treated the COP and CAP patients.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Cordier JF. Cryptogenic organising pneumonia. Eur Respir J 2006;28:422–46.10.1183/09031936.06.00013505Suche in Google Scholar PubMed

2. Cottin V, Cordier JF. Cryptogenic organizing pneumonia. Semin Respir Crit Care Med 2012;33:462–75.10.1055/s-0032-1325157Suche in Google Scholar PubMed

3. Cordier JF. Organising pneumonia. Thorax 2000;55:318–28.10.1136/thorax.55.4.318Suche in Google Scholar PubMed PubMed Central

4. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44(Suppl 2):S27–72.10.1086/511159Suche in Google Scholar PubMed PubMed Central

5. Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012;67:71–9.10.1136/thx.2009.129502Suche in Google Scholar PubMed

6. Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993;341:515–8.10.1016/0140-6736(93)90277-NSuche in Google Scholar

7. Odermatt J, Friedli N, Kutz A, Briel M, Bucher HC, Christ-Crain M, et al. Effects of procalcitonin testing on antibiotic use and clinical outcomes in patients with upper respiratory tract infections. An individual patient data meta-analysis. Clin Chem Lab Med 2017;56:170–7.10.1515/cclm-2017-0252Suche in Google Scholar PubMed

8. Hey J, Thompson-Leduc P, Kirson NY, Zimmer L, Wilkins D, RiceB, et al. Procalcitonin guidance in patients with lower respiratory tract infections: a systematic review and meta-analysis. Clin Chem Lab Med 2018;56:1200–9.10.1515/cclm-2018-0126Suche in Google Scholar PubMed

9. Sager R, Wirz Y, Amin D, Amin A, Hausfater P, Huber A, et al. Are admission procalcitonin levels universal mortality predictors across different medical emergency patient populations? Results from the multi-national, prospective, observational TRIAGE study. Clin Chem Lab Med 2017;55:1873–80.10.1515/cclm-2017-0144Suche in Google Scholar PubMed

10. Müller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis 2007;7:10.10.1186/1471-2334-7-10Suche in Google Scholar PubMed PubMed Central

11. Kolditz M, Halank M, Schulte-Hubbert B, Höffken G. Procalcitonin improves the differentiation between infectious and cryptogenic/secondary organizing pneumonia. J Infection 2012;64:122–4.10.1164/ajrccm-conference.2012.185.1_MeetingAbstracts.A5253Suche in Google Scholar

12. Palmucci S, Roccasalva F, Puglisi S, Torrisi SE, Vindigni V, Mauro LA, et al. Clinical and radiological features of idiopathic interstitial pneumonias (IIPs): a pictorial review. Insights Imaging 2014;5:347–64.10.1007/s13244-014-0335-3Suche in Google Scholar PubMed PubMed Central

13. Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med 2011;9:107.10.1186/1741-7015-9-107Suche in Google Scholar PubMed PubMed Central

14. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, AnzuetoA, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013;187:347–65.10.1164/rccm.201204-0596PPSuche in Google Scholar PubMed

15. Mehrian P, Shahnazi M, Dahaj AA, Bizhanzadeh S, Karimi MA. The spectrum of presentations of cryptogenic organizing pneumonia in high resolution computed tomography. Pol J Radiol 2014;79:456–60.10.12659/PJR.891011Suche in Google Scholar PubMed PubMed Central

16. Mehrian P, Doroudinia A, Rashti A, Aloosh O, Dorudinia A. High-resolution computed tomography findings in chronic eosinophilic vs. cryptogenic organising pneumonia. Int J Tuberc Lung Dis 2017;21:1181–6.10.5588/ijtld.16.0723Suche in Google Scholar PubMed

17. Schuetz P, Beishuizen A, Broyles M, Ferrer R, Gavazzi G, Gluck EH, et al. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med 2019;57:1308–18.10.1515/cclm-2018-1181Suche in Google Scholar PubMed

18. Takeda S, Nagata N, Miyazaki H, Akagi T, Harada T, Kodama M, et al. Clinical utility of procalcitonin for differentiating between cryptogenic organizing pneumonia and community-acquired pneumonia. Int J Clin Med 2015;6:372–6.10.4236/ijcm.2015.66048Suche in Google Scholar

19. Ito A, Ishida T, Tachibana H, Ito Y, Takaiwa T. Serial procalcitonin levels for predicting prognosis in community-acquired pneumonia. Respirology 2016;21:1459–64.10.1111/resp.12846Suche in Google Scholar PubMed

20. Self WH, Balk RA, Grijalva CG, Williams DJ, Zhu Y, Anderson EJ, et al. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin Infect Dis 2017;65:183–90.10.1093/cid/cix317Suche in Google Scholar PubMed PubMed Central

Received: 2019-02-13
Accepted: 2019-04-23
Published Online: 2019-05-23
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Blood biomarkers in neurology: “a call to arms” for laboratory professionals
  4. Reviews
  5. Diagnostic accuracy of glycated hemoglobin for gestational diabetes mellitus: a systematic review and meta-analysis
  6. Laboratory medicine: health evaluation in elite athletes
  7. Prostate cancer screening: guidelines review and laboratory issues
  8. Opinion Papers
  9. Extra-analytical sources of uncertainty: which ones really matter?
  10. Benefits and harms of wellness initiatives
  11. Genetics and Molecular Diagnostics
  12. Analytical and clinical validation of a novel amplicon-based NGS assay for the evaluation of circulating tumor DNA in metastatic colorectal cancer patients
  13. General Clinical Chemistry and Laboratory Medicine
  14. Pre-analytical practices for routine coagulation tests in European laboratories. A collaborative study from the European Organisation for External Quality Assurance Providers in Laboratory Medicine (EQALM)
  15. Preanalytical robustness of blood collection tubes with RNA stabilizers
  16. Continual improvement of the pre-analytical process in a public health laboratory with quality indicators-based risk management
  17. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis
  18. A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism
  19. Correlations between serum and CSF pNfH levels in ALS, FTD and controls: a comparison of three analytical approaches
  20. Dynamics of extracellular matrix proteins in cerebrospinal fluid and serum and their relation to clinical outcome in human traumatic brain injury
  21. Free light chains in the cerebrospinal fluid. Comparison of different methods to determine intrathecal synthesis
  22. Reference Values and Biological Variations
  23. Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender
  24. Next-generation reference intervals for pediatric hematology
  25. Hematology and Coagulation
  26. Preliminary evaluation of a new flow cytometry method for the routine hematology workflow
  27. Diabetes
  28. Trueness assessment of HbA1c routine assays: are processed EQA materials up to the job?
  29. Infectious Diseases
  30. Utility of procalcitonin for differentiating cryptogenic organising pneumonia from community-acquired pneumonia
  31. A high C-reactive protein/procalcitonin ratio predicts Mycoplasma pneumoniae infection
  32. Letters to the Editor
  33. Evaluation of reference change values for a hs-cTnI immunoassay using both plasma samples of healthy subjects and patients and quality control samples
  34. Outlier removal methods for skewed data: impact on age-specific high-sensitive cardiac troponin T 99th percentiles
  35. Comparison of precision and operational performances across six immunochemistry analyzers
  36. Evaluation of the possible interference of abiraterone therapy on testosterone immunoassay
  37. Erroneous thyroid and steroid hormones profile due to anti-streptavidin antibodies
  38. Reference values for 24,25-dihydroxyvitamin D and the 25-hydroxyvitamin D/24,25-dihydroxyvitamin D ratio
  39. Pre-analytical error in a hematology laboratory: an avoidable cause of compromised quality in reporting
  40. Stability of tubular damage markers epidermal growth factor and heparin-binding EGF-like growth factor in urine
  41. Blood from heparin tubes is an acceptable alternative to assess hematocrit determination
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2019-0175/html
Button zum nach oben scrollen