Home A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism
Article
Licensed
Unlicensed Requires Authentication

A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism

  • Etienne Cavalier EMAIL logo , Richard Eastell , Niklas Rye Jørgensen , Konstantinos Makris , Symeon Tournis , Samuel Vasikaran , John A. Kanis , Cyrus Cooper , Hans Pottel , Howard A. Morris and on behalf of the IFCC-IOF Joint Committee for Bone Metabolism (C-BM)
Published/Copyright: May 14, 2019

Abstract

Background

Biochemical bone turnover markers (BTM) are useful tools to assess bone remodeling at the cellular level. N-terminal propeptide of type I procollagen (PINP) has been recommended as a reference marker for bone formation in research studies.

Methods

We describe the results of a multicenter study for routine clinical laboratory assays for PINP in serum and plasma. Four centers (Athens, Greece [GR], Copenhagen, Denmark [DK], Liege, Belgium [BE] and Sheffield, United Kingdom [UK]) collected serum and plasma (EDTA) samples from 796 patients presenting to osteoporosis clinics. Specimens were analyzed in duplicate with each of the available routine clinical laboratory methods according to the manufacturers’ instructions. Passing-Bablok regressions, Bland-Altman plots, V-shape evaluation method and the concordance correlation coefficient for PINP values between serum and plasma specimens and between methods were used to determine the agreement between results. A generalized linear model was employed to identify possible variables that affected the relationship between the methods.

Results

We showed that both EDTA plasma and serum were suitable for PINP determination. We observed a significant proportional bias between Orion radioimmunoassay and the automated methods for PINP (Roche Cobas and IDS iSYS), which both gave very similar results. The multivariate model did not improve the excellent correlation that was observed between the methods.

Conclusions

Harmonization of PINP assays is possible by applying a correction factor or correctly assigning the values of the calibrators. This work will benefit from further collaboration between assays manufacturers and clinical laboratory professionals.

Acknowledgments

We acknowledge the support of Roche Diagnostics International Ltd, Immunodiagnostics Systems Holdings plc and Orion Diagnostica Oy for financial support and supply of reagents, calibrators and internal quality control specimens for the PINP assays.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 2013;8:136.10.1007/s11657-013-0136-1Search in Google Scholar PubMed PubMed Central

2. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011;49:1271–4.10.1515/CCLM.2011.602Search in Google Scholar PubMed

3. Diez-Perez A, Naylor KE, Abrahamsen B, Agnusdei D, Brandi ML, Cooper C, et al. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int 2017;28:767–74.10.1007/s00198-017-3906-6Search in Google Scholar PubMed PubMed Central

4. Koivula MK, Risteli L, Risteli J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin Biochem 2012;45:920–7.10.1016/j.clinbiochem.2012.03.023Search in Google Scholar PubMed

5. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliancerecommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 2017;28:2541–56.10.1007/s00198-017-4082-4Search in Google Scholar PubMed

6. Cavalier E, Lukas P, Carlisi A, Gadisseur R, Delanaye P. Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta 2013;425:117–8.10.1016/j.cca.2013.07.016Search in Google Scholar PubMed

7. Koivula MK, Ruotsalainen V, Björkman M, Nurmenniemi S, Ikäheimo R, Savolainen K, et al. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 2010;47:67–71.10.1258/acb.2009.009110Search in Google Scholar PubMed

8. Marin L, Koivula MK, Jukkola-Vuorinen A, Leino A, Risteli J. Comparison of total and intact aminoterminal propeptide of type I procollagen assays in patients with breast cancer with or without bone metastases. Ann Clin Biochem 2011;48:447–51.10.1258/acb.2011.011040Search in Google Scholar PubMed

9. Wheater G, Goodrum C, Tuck SP, Datta HK, van Laar JM. Method-specific differences in β-isomerised carboxy-terminal cross-linking telopeptide of type I collagen and procollagen type I amino-terminal propeptide using two fully automated immunoassays. Clin Chem Lab Med 2014;52:135–8.10.1515/cclm-2013-0934Search in Google Scholar PubMed

10. Koivula MK, Richardson J, Leino A, Valleala H, Griffiths K, Barnes A, et al. Validation of an automated intact N-terminal propeptide of type I procollagen (PINP) assay. Clin Biochem 2010;43:1453–7.10.1016/j.clinbiochem.2010.09.019Search in Google Scholar PubMed

11. Jørgensen NR, Møllehave LT, Hansen YB, Quardon N, Lylloff L, Linneberg A. Comparison of two automated assays of BTM (CTX and P1NP) and reference intervals in a Danish population. Osteoporos Int 2017;28:2103–13.10.1007/s00198-017-4026-zSearch in Google Scholar

12. Morovat A, Catchpole A, Meurisse A, Carlisi A, Bekaert A-C, Rousselle O, et al. IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med 2013;51:2009–18.10.1515/cclm-2012-0531Search in Google Scholar

13. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 2008;54:188–96.10.1373/clinchem.2007.094953Search in Google Scholar

14. Genant HK, Grampp S, Glüer CC, Faulkner KG, Jergas M, Engelke K, et al. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994;9:1503–14.10.1002/jbmr.5650091002Search in Google Scholar

15. CLSI. EP15-A3 User Verification of Precision and Estimation of Bias. 2014.Search in Google Scholar

16. Alvarez L, RicOs C, Peris P, GuaNabens N, Monegal A, Pons F, et al. Components of biological variation of biochemical markers of bone turnover in Paget’s bone disease. Bone 2000;26:571–6.10.1016/S8756-3282(00)00279-9Search in Google Scholar

17. Hannon R, Blumsohn A, Naylor K, Eastell R. Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Min Res 1998;13:1124–33.10.1359/jbmr.1998.13.7.1124Search in Google Scholar

18. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 2002;30:886–90.10.1016/S8756-3282(02)00728-7Search in Google Scholar

19. Rogers A, Glover SJ, Eastell R. A randomised, double-blinded, placebo-controlled, trial to determine the individual response in bone turnover markers to lasofoxifene therapy. Bone 2009;45:1044–52.10.1016/j.bone.2009.07.089Search in Google Scholar PubMed

20. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255–68.10.2307/2532051Search in Google Scholar

21. McBride GB. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Rep 2005;HAM2005-06:14.Search in Google Scholar

22. Morris HA, Eastell R, Jorgesen NR, Cavalier E, Vasikaran S, Chubb SA, et al. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 2017;467:34–41.10.1016/j.cca.2016.06.036Search in Google Scholar PubMed

23. Redmond J, Fulford AJ, Jarjou L, Zhou B, Prentice A, Schoenmakers I. Diurnal rhythms of bone turnover markers in three ethnic groups. J Clin Endocrinol Metab 2016;101:3222–30.10.1210/jc.2016-1183Search in Google Scholar PubMed PubMed Central

Received: 2019-02-13
Accepted: 2019-04-08
Published Online: 2019-05-14
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Blood biomarkers in neurology: “a call to arms” for laboratory professionals
  4. Reviews
  5. Diagnostic accuracy of glycated hemoglobin for gestational diabetes mellitus: a systematic review and meta-analysis
  6. Laboratory medicine: health evaluation in elite athletes
  7. Prostate cancer screening: guidelines review and laboratory issues
  8. Opinion Papers
  9. Extra-analytical sources of uncertainty: which ones really matter?
  10. Benefits and harms of wellness initiatives
  11. Genetics and Molecular Diagnostics
  12. Analytical and clinical validation of a novel amplicon-based NGS assay for the evaluation of circulating tumor DNA in metastatic colorectal cancer patients
  13. General Clinical Chemistry and Laboratory Medicine
  14. Pre-analytical practices for routine coagulation tests in European laboratories. A collaborative study from the European Organisation for External Quality Assurance Providers in Laboratory Medicine (EQALM)
  15. Preanalytical robustness of blood collection tubes with RNA stabilizers
  16. Continual improvement of the pre-analytical process in a public health laboratory with quality indicators-based risk management
  17. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis
  18. A multicenter study to evaluate harmonization of assays for N-terminal propeptide of type I procollagen (PINP): a report from the IFCC-IOF Joint Committee for Bone Metabolism
  19. Correlations between serum and CSF pNfH levels in ALS, FTD and controls: a comparison of three analytical approaches
  20. Dynamics of extracellular matrix proteins in cerebrospinal fluid and serum and their relation to clinical outcome in human traumatic brain injury
  21. Free light chains in the cerebrospinal fluid. Comparison of different methods to determine intrathecal synthesis
  22. Reference Values and Biological Variations
  23. Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender
  24. Next-generation reference intervals for pediatric hematology
  25. Hematology and Coagulation
  26. Preliminary evaluation of a new flow cytometry method for the routine hematology workflow
  27. Diabetes
  28. Trueness assessment of HbA1c routine assays: are processed EQA materials up to the job?
  29. Infectious Diseases
  30. Utility of procalcitonin for differentiating cryptogenic organising pneumonia from community-acquired pneumonia
  31. A high C-reactive protein/procalcitonin ratio predicts Mycoplasma pneumoniae infection
  32. Letters to the Editor
  33. Evaluation of reference change values for a hs-cTnI immunoassay using both plasma samples of healthy subjects and patients and quality control samples
  34. Outlier removal methods for skewed data: impact on age-specific high-sensitive cardiac troponin T 99th percentiles
  35. Comparison of precision and operational performances across six immunochemistry analyzers
  36. Evaluation of the possible interference of abiraterone therapy on testosterone immunoassay
  37. Erroneous thyroid and steroid hormones profile due to anti-streptavidin antibodies
  38. Reference values for 24,25-dihydroxyvitamin D and the 25-hydroxyvitamin D/24,25-dihydroxyvitamin D ratio
  39. Pre-analytical error in a hematology laboratory: an avoidable cause of compromised quality in reporting
  40. Stability of tubular damage markers epidermal growth factor and heparin-binding EGF-like growth factor in urine
  41. Blood from heparin tubes is an acceptable alternative to assess hematocrit determination
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2019-0174/html
Scroll to top button