Abstract
Background
The process of technology validation and transfer of new molecular diagnostic tests towards the clinic faces challenges and needs to be improved. There is no empirical measure of the chronology and pace of technology transfer of molecular genetic discoveries.
Methods
We studied these for 29 molecular genetic test discoveries in order to (1) provide estimates of the timeframe between discovery of a clinical application and complete clinical implementation, and (2) compare the trajectories between different new tests to identify common patterns. We identified 11 publicly available “timestamps” for the technology transfer process ranging from discovery of the marker to use in a clinical setting. For each test selected, we searched public databases to identify available timestamps and dates. We plotted and compared trajectories of individual tests, including chronology.
Results
We show that there is much variability in the chronology of transfer between biomarkers. The median time between discovery of the marker and availability of the clinical test was 9.5 years (minimum 1). There was a median time of 18 years between test discovery and FDA approval (minimum 7 years), and it took a median of 17 years between discovery and the availability of a certified reference material for the 10 assays that have one (minimum 9 years).
Conclusions
We conclude that new molecular genetic tests take significant time between discovery and clinical implementation, and that further work is needed to pinpoint key factors, including policy and organization factors, that may allow for improving and streamlining this process.
Introduction
Since the completion of the Human Genome Project in 2001, and the HapMap Project in 2006, the pace of genetic discovery has been exponential [1], [2]. These projects have shown that the genome is a significant determinant of health [3] and response to healthcare [4], and that most diseases have a causal genetic component, thus creating expectations that genetic discoveries will strongly impact healthcare [5], [6]. Seventy percent of medical decisions rely on laboratory results [7], [8] and genetic innovations are foreseen as major sources of diagnostic and prognostic information during the present century [4], [9], [10]. However, developed countries do not efficiently deliver medical innovations to their population [11], [12], especially new gene-based biomarkers of disease derived from the human genome project [13], [14], [15]. According to the Foundation for Genomics and Population Health, although genomic science is in a “robust state”, “progress is dramatically slower in evaluating the clinical and public health relevance of these scientific advances and in developing systems for effective translation of validated tests and interventions into clinical practice” [16]. We therefore must improve our understanding of the process of transferring genetic and genomic innovations from “bench to bed side” [17], [18], [19], [20], [21]. It has been documented that it takes on average 17 years for a scientific discovery to reach routine clinical use [22]. In order to inform the translational process for molecular diagnostic tests, we have studied the chronology and pace of technology transfer for 29 different molecular genetic test discoveries with the objectives to (1) provide estimates of the timeframe between discovery and complete clinical implementation, and (2) compare the trajectories between different new tests to identify common patterns and bottlenecks.
Materials and methods
We first developed a list of 11 publicly available “timestamps” for the technology transfer process (Table 1) and identified 29 widely used molecular genetic tests with different characteristics of mode of inheritance and clinical indications (Table 2). Most of the tests concerned one specific gene involved in one or more pathologies (e.g. FMR1 and APOE), however, we also included two cytochromes P450 markers (CYP2D6 and CYP2C9) used to determine drug response, a panel of microsatellite instability (HNPCC MSI) associated with hereditary non-polyposis colorectal carcinoma as well as a genomic test for non-invasive prenatal screening for fetal aneuploidies (NIPS). In addition the markers could be categorized as follows: autosomal dominant (LDLR, RB1, F2, APC, DMPK, MSH2, RET, HTT, HNPCC MSI, BRCA1, F5, MLH1, BRCA2, MSH6); autosomal recessive (HBA1, HEXA, CFTR, LPL, SMN1, HFE, FXN); X-linked (DMD, FMR1); predictive (APOE, HTT); pharmacogenetics (CYP2D6, CYP2C9, MTHFR and TPMT); screening (NIPS). For each marker, a search was undertaken in the indexed databases and websites of Health Technology Assessment (HTA) agencies, professional associations, medical genetics information resources and biotechnology companies. The search covered the period anterior to December 31st 2017. A list of the databases searched is presented in Table 3.
List of publicly available timestamps for technology transfer.
Association marker-disease published |
Patent application for molecular test |
Commercial availability of analyte-specific reagents kit |
FDA or CE approval of test kit |
Meta-analysis published |
Health technology assessment report published |
Proficiency testing (QC or EQA) program |
Reference material available |
Certified reference material available |
Guideline supporting use of the test |
Accessibility of test as per Healthcare Common Procedure Coding System Codes (USA), Ontario or Québec test repertoires |
List of tests/markers and corresponding pathologies or role in treatment.
Marker name | Abbreviation | Pathologies or role in treatment |
---|---|---|
Adenomatous polyposis coli | APC | Familial adenomatous polyposis and APC-associated polyposis conditions |
Apolipoprotein E | APOE | Alzheimer disease-2 and hyperlipoproteinemia type III |
Breast cancer 1 DNA repair associated | BRCA1 | Breast and ovarian cancer |
Breast cancer 2 DNA repair associated | BRCA2 | Breast and ovarian cancer |
Cystic fibrosis transmembrane conductance regulator | CFTR | Cystic fibrosis |
Cytochrome P450 family 2 subfamily C member 9 | CYP2C9 | Drug metabolism |
Cytochrome P450 family 2 subfamily D member 6 | CYP2D6 | Drug metabolism |
Dystrophin | DMD | Duchenne and Becker muscular dystrophies |
Myotonica-protein kinase | DMPK | Myotonic dystrophy type I |
Coagulation factor II, thrombin | F2 | Thrombosis and dysprothrombinemia |
Coagulation factor V | F5 | Thrombophilia due to factor V Leiden or activated protein C resistance |
Fragile X mental retardation 1 | FMR1 | Fragile X syndrome and premature ovarian failure |
Frataxin | FXN | Friedreich ataxia |
Hemoglobin subunit alpha 1 | HBA1 | Alpha thalassemia |
Hexosaminidase subunitalpha | HEXA | GM2 gangliosidoses including Tay-Sachs disease and GM2 activator deficiency |
Hemostatic iron regulator | HFE | Hereditary haemochromatosis |
Huntingtin | HTT | Huntington’s disease |
Low density lipoprotein receptor | LDLR | Familial hypercholesterolemia |
Lipoprotein lipase | LPL | Many disorders of lipoprotein metabolism including type I hyperlipoproteinemia and familial lipoprotein lipase deficiency |
MutL homolog 1 | MLH1 | Hereditary nonpolyposis colorectal cancer type 2 or Lynch syndrome II |
MutS homolog 2 | MSH2 | Hereditary nonpolyposis colon cancer type I or Lynch syndrome I |
MutS homolog 6 | MSH6 | Hereditary nonpolyposis colorectal cancer type 5 |
Hereditary nonpolyposis colorectal cancer microsatellite instability test | HPNCC MSI | Hereditary nonpolyposis colorectal carcinoma syndrome and nonhereditary colorectal carcinoma |
Methylenetetrahydrofolate reductase | MTHFR | Methylenetetrahydrofolate reductase deficiency |
Non-invasive prenatal screening for fetal aneuploidy | NIPS | Trisomy 21, 18, and 13 |
RB transcriptional corepressor 1 | RB1 | Childhood retinoblastoma |
Ret proto-oncogene | RET | Multiple endocrine neoplasia type IIA and IIB, Hirschsprung disease, medullary thyroid carcinoma |
Survival of motor neuron 1, telomeric | SMN1 | Spinal muscular atrophy |
Thiopurine S-methyltransferase | TPMT | Drug metabolism, poor metabolism of thiopurines, 6-mercaptopurine sensitivity |
List of databases.
Database | Subject | Web site |
---|---|---|
PubMed | Biomedical citations | http://www.ncbi.nlm.nih.gov/pubmed/ |
GeneTests | Medical genetics information | https://www.ncbi.nlm.nih.gov/gtr/ |
GeneCards | Human genes | http://www.genecards.org/ |
HuGe Navigator | Human genome epidemiology | https://phgkb.cdc.gov/PHGKB/hNHome.action |
Centre for Reviews and Dissemination | Research evidence in health and social care | https://www.crd.york.ac.uk/CRDWeb/ |
Orbit.com | Patents | https://www.orbit.com/#WelcomePage |
Espacenet | Patents | http://www.epo.org/index.html |
CIPO | Patents | http://www.ic.gc.ca/opic-cipo/cpd/eng/introduction.html |
WIPO | Patents | http://www.wipo.int/portal/en/ |
Results
A long and heterogeneous translation process
Figure 1 shows the chronology of each available timestamp for the 29 markers in relation to time expressed in years. The figure is arranged so that the top marker was the latest discovered and the bottom marker was the first discovered. For 21 out of 29 cases, the discovery of the marker was almost coincident with the discovery of the marker-disease association (not shown), suggesting that the marker was discovered because of its pathogenic role. In six cases, at the end of data collection, there was still no FDA or CE approved marketed tests available, indicating that in the great majority of cases that we studied, the identification of the marker led to the development of a test for the condition. Figure 2 shows a box-and-whisker plot of the time taken for each timestamp where the dot indicates the mean. The graph shows that it takes a median of 4 years after the discovery of the marker-disease association for the patents to be awarded and guidelines to be published; a median of less than 5 years for quality control assessment programs to be available, 9 years for accessibility and 9.5 years for marketing of the test; a median of 10 years for publication of HTA studies and meta-analyses; availability of reference material takes 1 more year; and a median of 18 years for availability of FDA- or CE-approved test and 17 years for a certified reference material (although for this last timestamp only 10 tests have reached this stage). The test that was translated with the smallest time lag is NIPS, with almost half the time observed for other tests.

Chronology of public timestamps for translation of genetic discoveries into the clinic.
Chronology of public timestamps for translation of genetic discoveries into the clinic. The x-axis represents the year of the timestamps events identified for each test evaluated (y-axis, see Table 2). Each timestamp observed is shown with a different symbol (see graphic legend).

Box-and-whisker plot of the time taken for each test to reach specific timestamps.
Box-and-whisker plot of the time taken for each timestamp where the dot indicates the mean and the extremities of the box the upper and lower quartiles. The vertical line within the box represents the median, and the extreme lines the maximum and minimum of the values observed.
Discussion
The main observation emerging from our analysis is that there is heterogeneity in the process of translation from discovery to clinical application between the markers studied. Indeed, all timestamps were not present for all tests, they were also or exactly in the same order and the delays between each timestamp were different. Another observation is that in terms of timeline, the translation process remains very long, with nearly 10 years before a test is marketed, and more than 18 years for a FDA- or CE-approved test. Factors that may influence this timeline include: year of discovery of the marker, strength of the link between test result and clinical validity, potential for improved health care, demonstration of clinical utility (in jurisdictions where health technology assessment is mandatory prior to implementation and coverage), funding (or reimbursement) by the health care system or health care insurers, easy interpretation of test result by the physician, laboratory constraints (such as test complexity, increased regulation of laboratory developed tests), marketing of the test, ethical considerations such as social acceptability, and lobbying by patients associations. Figure 1 shows that the most recent discoveries have a shorter timeline than the oldest. Although the numbers presented here are not sufficient to establish the causality of such an observation, technology improvements in the field of molecular diagnostics and the fact that such assays are becoming more of a commodity may contribute to this phenomenon. The reasons for the much quicker translation of NIPS may have included rapid uptake, validation and implementation by industry accompanied by strong marketing of a test that has the potential of improving significantly the safety of prenatal testing and of generating huge revenues as it is a screening test [23], [24].
One additional problem in the translation of basic research results into clinical practice is the lack of specific research funding available from public funding agencies to perform the studies providing the evidence base informing the decisions about implementing or not a new diagnostic test. There are also alternate commercialization strategies and potential barriers to commercialization that may not be related to research funding [25]. These might include the challenges of protecting diagnostic IP, the generally poor profit margins on diagnostic testing (as compared to medication), and the potential disincentive of pharma to support diagnostic tests that could limit the pool of available patients eligible to treatment. Public health systems and payers (such as health insurance companies) might also be alternate sources of funding if the test has potential for economic return, system efficiency or health improvement.
Khoury and collaborators have proposed a model in which translational research is divided into four phases: (1) development of candidate health applications; (2) evaluation leading to recommendations and guidelines; (3) implementation and integration into clinical practice; and (4) health outcomes and population impacts [26]. A survey of research grants funded by the National Cancer Institute (USA) in 2010 indicates that only 1.7% of these grants supported the second phase or beyond [27]. An analysis of the biomedical literature between 2001 and 2006 showed that less than 3% of publications addressed phases 2–4 [26]. To further complicate the problem, due to more and more efficient technologies there is a dramatic increase in basic research findings that need replication and solid clinical validation, while some authors have raised issues concerning credibility and replication of these findings [28]. There is thus a need for a funding and research strategy to improve the systematic replication, evaluation, implementation and translation of molecular genetic markers, especially in the present context and high hopes for precision medicine based on genomic applications in health [24], [25], [29], [30].
Funding source: Institute of Genetics
Award Identifier / Grant number: ETG-2008
Funding source: Réseau de Médecine Génétique Appliquée
Award Identifier / Grant number: Chaires de recherche ETMIS
Funding statement: This project was funded by a grant from Institute of Genetics, Funder Id: http://dx.doi.org/10.13039/501100000030, Grant Number: ETG-2008, the Canadian Institutes for Health Research to FR et al. for the APOGEE-Net/CanGèneTest Research and Knowledge Network on Genetic and Genomic Services and Policy, by a FRQ-Santé grant to FR on health technology assessment and by the Réseau de Médecine Génétique Appliquée (FRQ-Santé, Funder Id: http://dx.doi.org/10.13039/501100000156, Grant Number: Chaires de recherche ETMIS).
Author contributions: FR conceived the study design and methods, analyzed data, wrote the manuscript and coordinated the project. CL performed the data collection and preliminary analysis, draft of the manuscript and prepared the figures and tables. YL and YG contributed to the conception and coordination of the project and revision of results and of the manuscript. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Employment or leadership: None declared.
Honorarium: FR holds a salary award from the FRQ-S.
Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.
References
1. Department of Health. Our inheritance, our future: realizing the potential of genetics in the National Health Service. London, UK: Department of Health, 2003.Search in Google Scholar
2. Arundel A, Sawaya D, Valeanu I. Human health biotechnologies to 2015. OECD J: Gen Pap 2010;2009/3:113–207.10.1787/gen_papers-2009-5kmjkjtfxdg7Search in Google Scholar
3. Collins F. Has the revolution arrived? Nature 2010;464:674–5.10.1038/464674aSearch in Google Scholar PubMed PubMed Central
4. Guttmacher AE, Collins FS. Welcome to the genomic era. N Engl J Med 2003;349:996–8.10.1056/NEJMe038132Search in Google Scholar PubMed
5. Becich MJ. Information management: moving from test results to clinical information. Clin Leadersh Manag Rev 2000;14:296–300.Search in Google Scholar
6. Forsman RW. Why is the laboratory an afterthought for managed care organizations? Clin Chem 1996;42:813–6.10.1093/clinchem/42.5.813Search in Google Scholar
7. Ontario Government. Genetics, testing and gene patenting: charting new territory in healthcare. Ministry of Health and Long-Term Care. Ontario, Canada: Ontario Government, 2002.Search in Google Scholar
8. Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med 2003;348:50–8.10.1056/NEJMra013182Search in Google Scholar PubMed
9. Amos J, Patnaik M. Commercial molecular diagnostics in the U.S.: The Human Genome Project to the clinical laboratory. Hum Mutat 2002;19:324–33.10.1002/humu.10061Search in Google Scholar PubMed
10. Wilkinson DS. The role of technology in the clinical laboratory of the future. Clin Lab Manage Rev 1997;11:322–30.Search in Google Scholar
11. Brand A. Integrative genomics, personal-genome tests and personalized healthcare: the future is being built today. Eur J Hum Genet 2009;17:977–8.10.1038/ejhg.2009.32Search in Google Scholar PubMed PubMed Central
12. IOM (Institute of Medicine). Systems for research and evaluation for translating genome-based discoveries for health: workshop summary. Washington, DC: The National Academies Press, 2009.Search in Google Scholar
13. Gurwitz D, Zika E, Hopkins MM, Gaisser S, Ibarreta D. Pharmacogenetics in Europe: barriers and opportunities. Public Health Genomics 2009;12:134–41.10.1159/000189625Search in Google Scholar PubMed
14. Lenfant C. Shattuck lecture – clinical research to clinical practice – lost in translation? N Engl J Med 2003;349:868–74.10.1056/NEJMsa035507Search in Google Scholar PubMed
15. Ferreira-Gonzalez A, Teutsch S, Williams MS, Au SM, Fitzgerald KT, Miller PS, et al. US system of oversight for genetic testing: a report from the Secretary’s Advisory Committee on Genetics, Health and Society. Per Med 2008;5:521–8.10.2217/17410541.5.5.521Search in Google Scholar PubMed PubMed Central
16. Graham ID, Tetroe J. How to translate health research knowledge into effective healthcare action. Healthcare quarterly (Toronto, Ont) 2007;10:20–2.10.12927/hcq..18919Search in Google Scholar PubMed
17. Avard D, Bridge P, Bucci LM, Chiquette J, Dorval M, Durocher F, et al. Partnering in oncogenetic research – the INHERIT BRCAs experience: opportunities and challenges. Fam Cancer 2006;5:3–13.10.1007/s10689-005-2570-8Search in Google Scholar PubMed
18. Burke W, Khoury MJ, Stewart A, Zimmern RL, Bellagio G. The path from genome-based research to population health: development of an international public health genomics network. Genet Med 2006;8:451–8.10.1097/01.gim.0000228213.72256.8cSearch in Google Scholar PubMed
19. Evans WJ, Britt DW. The genomic revolution and the obstetrician/gynaecologist: from societal trends to patient sessions. Best Pract Res Clin Obstet Gynaecol 2002;16:729–44.10.1053/beog.2002.0312Search in Google Scholar PubMed
20. Gwinn M, Khoury MJ. Research priorities for public health sciences in the postgenomic era. Genet Med 2002;4:410–1.10.1097/00125817-200211000-00002Search in Google Scholar PubMed
21. Mann L. The general practitioner and the “new genetics”. Med J Aust 2003;179:109–11.10.5694/j.1326-5377.2003.tb05449.xSearch in Google Scholar PubMed
22. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med 2011;104:510–20.10.1258/jrsm.2011.110180Search in Google Scholar PubMed PubMed Central
23. The French National Authority for Health (HAS). Assessment & Recommendation, Public health and organization of improving the provision of care, Screening and prevention, Public Health Recommendation [Les performances des tests de dépistage de la trisomie 21 fœtale par analyse de l’ADN libre circulant – Volet 1]. 2015. p. 1–112.Search in Google Scholar
24. OECD. Policy Issues for the Development and Use of Biomarkers in Health. 2011.Search in Google Scholar
25. Murdoch B, Ravitsky V, Ogbogu U, Ali-Khan S, Bertier G, Birko S, et al. Non-invasive prenatal testing and the unveiling of an impaired translation process. J Obstet Gynaecol Can 2017;39:10–7.10.1016/j.jogc.2016.09.004Search in Google Scholar PubMed
26. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, BradleyL. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet Med 2007;9:665–74.10.1097/GIM.0b013e31815699d0Search in Google Scholar PubMed
27. Schully SD, Benedicto CB, Khoury MJ. How can we stimulate translational research in cancer genomics beyond bench to bedside? Genet Med 2012;14:169–70.10.1038/gim.2011.12Search in Google Scholar PubMed
28. Ioannidis JP. Evolution and translation of research findings: from bench to where? PLoS Clin Trials 2006;1:e36.10.1371/journal.pctr.0010036Search in Google Scholar PubMed PubMed Central
29. Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature 2015;526:336–42.10.1038/nature15816Search in Google Scholar PubMed PubMed Central
30. Auffray C, Caulfield T, Griffin JL, Khoury MJ, Lupski JR, Schwab M. From genomic medicine to precision medicine: highlights of 2015. Genome Med 2016;8:12.10.1186/s13073-016-0265-4Search in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorials
- CCLM Award for the Most Cited Paper
- Folate and vitamin B12 assays after recalibration to the WHO International Standard 03/178: making the interpretation as simple as possible, but not simpler
- Reviews
- Blood contamination in salivary diagnostics: current methods and their limitations
- Central adrenal insufficiency: open issues regarding diagnosis and glucocorticoid treatment
- Genetics and Molecular Diagnostics
- Measuring the chronology of the translational process of molecular genetic discoveries
- Development and interlaboratory evaluation of a NIST Reference Material RM 8366 for EGFR and MET gene copy number measurements
- General Clinical Chemistry and Laboratory Medicine
- Post-translational modification-derived products are associated with frailty status in elderly subjects
- Urine chloride self-measurement to monitor sodium chloride intake in patients with chronic kidney disease
- Estimated urinary osmolality based on combined urinalysis parameters: a critical evaluation
- Measurement of S100B protein: evaluation of a new prototype on a bioMérieux Vidas® 3 analyzer
- Measuring thyroglobulin in patients with thyroglobulin autoantibodies: evaluation of the clinical impact of BRAHMS Kryptor® Tg-minirecovery test in a large series of patients with differentiated thyroid carcinoma
- Human chorionic gonadotropin suspected heterophile interference investigations in immunoassays: a recommended approach
- Certified reference material against PR3 ANCA IgG autoantibodies. From development to certification
- Diagnostic accuracy of a fully automated multiplex celiac disease antibody panel for serum and plasma
- Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status
- Hematology and Coagulation
- The association between activated protein C ratio and Factor V Leiden are gender-dependent
- Reference Values and Biological Variations
- Determination of sigma score based on biological variation for haemostasis assays: fit-for-purpose for daily practice?
- Calcitonin measurement in pediatrics: reference ranges are gender-dependent, validation in medullary thyroid cancer and thyroid diseases
- Cancer Diagnostics
- Uncovering the clinical impact of kallikrein-related peptidase 5 (KLK5) mRNA expression in the colorectal adenoma-carcinoma sequence
- Cardiovascular Diseases
- Performance of a novel high sensitivity cardiac troponin I assay in asymptomatic hemodialysis patients – evidence for sex-specific differences
- Infectious Diseases
- Rapid susceptibility testing of multi-drug resistant Escherichia coli and Klebsiella by glucose metabolization monitoring
- Letters to the Editor
- Vitamin B12 and folate levels in a healthy population: establishing reference intervals
- Reference values of a new serum folate assay traceable to the WHO International Standard
- Serum protein electrophoresis and complement deficiencies: a veteran but very versatile test in clinical laboratories
- Introduction of a novel ELISA assay for serum AMH determination
- Bone alkaline phosphatase on the IDS-iSYS automated analyser; cross-reactivity with intestinal ALP
- Evaluation of the MULTISURE HIV Rapid Test in a Korean population with low human immunodeficiency virus prevalence
- Vancomycin immunoassay: does the Advia Centaur XPT underestimate the exposure of patients? A method comparison study
- Hb Hunan and Hb Hengyang: Two unexpected discoveries during HbA1c measurements
- Analytical performance of a CE-marked immunoassay to quantify phosphorylated neurofilament heavy chains
- Implementation of an automated method for direct quantification of urinary ammonium
- Congress Abstracts
- Proceedings of ACBI 2018 41ST Annual Conference Association of Clinical Biochemists in Ireland
Articles in the same Issue
- Frontmatter
- Editorials
- CCLM Award for the Most Cited Paper
- Folate and vitamin B12 assays after recalibration to the WHO International Standard 03/178: making the interpretation as simple as possible, but not simpler
- Reviews
- Blood contamination in salivary diagnostics: current methods and their limitations
- Central adrenal insufficiency: open issues regarding diagnosis and glucocorticoid treatment
- Genetics and Molecular Diagnostics
- Measuring the chronology of the translational process of molecular genetic discoveries
- Development and interlaboratory evaluation of a NIST Reference Material RM 8366 for EGFR and MET gene copy number measurements
- General Clinical Chemistry and Laboratory Medicine
- Post-translational modification-derived products are associated with frailty status in elderly subjects
- Urine chloride self-measurement to monitor sodium chloride intake in patients with chronic kidney disease
- Estimated urinary osmolality based on combined urinalysis parameters: a critical evaluation
- Measurement of S100B protein: evaluation of a new prototype on a bioMérieux Vidas® 3 analyzer
- Measuring thyroglobulin in patients with thyroglobulin autoantibodies: evaluation of the clinical impact of BRAHMS Kryptor® Tg-minirecovery test in a large series of patients with differentiated thyroid carcinoma
- Human chorionic gonadotropin suspected heterophile interference investigations in immunoassays: a recommended approach
- Certified reference material against PR3 ANCA IgG autoantibodies. From development to certification
- Diagnostic accuracy of a fully automated multiplex celiac disease antibody panel for serum and plasma
- Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status
- Hematology and Coagulation
- The association between activated protein C ratio and Factor V Leiden are gender-dependent
- Reference Values and Biological Variations
- Determination of sigma score based on biological variation for haemostasis assays: fit-for-purpose for daily practice?
- Calcitonin measurement in pediatrics: reference ranges are gender-dependent, validation in medullary thyroid cancer and thyroid diseases
- Cancer Diagnostics
- Uncovering the clinical impact of kallikrein-related peptidase 5 (KLK5) mRNA expression in the colorectal adenoma-carcinoma sequence
- Cardiovascular Diseases
- Performance of a novel high sensitivity cardiac troponin I assay in asymptomatic hemodialysis patients – evidence for sex-specific differences
- Infectious Diseases
- Rapid susceptibility testing of multi-drug resistant Escherichia coli and Klebsiella by glucose metabolization monitoring
- Letters to the Editor
- Vitamin B12 and folate levels in a healthy population: establishing reference intervals
- Reference values of a new serum folate assay traceable to the WHO International Standard
- Serum protein electrophoresis and complement deficiencies: a veteran but very versatile test in clinical laboratories
- Introduction of a novel ELISA assay for serum AMH determination
- Bone alkaline phosphatase on the IDS-iSYS automated analyser; cross-reactivity with intestinal ALP
- Evaluation of the MULTISURE HIV Rapid Test in a Korean population with low human immunodeficiency virus prevalence
- Vancomycin immunoassay: does the Advia Centaur XPT underestimate the exposure of patients? A method comparison study
- Hb Hunan and Hb Hengyang: Two unexpected discoveries during HbA1c measurements
- Analytical performance of a CE-marked immunoassay to quantify phosphorylated neurofilament heavy chains
- Implementation of an automated method for direct quantification of urinary ammonium
- Congress Abstracts
- Proceedings of ACBI 2018 41ST Annual Conference Association of Clinical Biochemists in Ireland