Startseite Different immunoreactivity of monomers and dimers makes automated free light chains assays not equivalent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Different immunoreactivity of monomers and dimers makes automated free light chains assays not equivalent

  • Laura Caponi EMAIL logo , Elona Koni , Nadia Romiti , Aldo Paolicchi und Maria Franzini
Veröffentlicht/Copyright: 23. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Background

The automated immunochemical serum free light chains (FLC) assays, Freelite (a polyclonal antiserum) and N Latex FLC (a mixture of monoclonal antibodies), are not interchangeable, as they may provide different results on a same sample. This study was aimed to establish if the calibrators contain FLC oligomers, and if different reactivity against monomers and dimers contributes to the discrepancy.

Methods

Gel filtration chromatography fractions of the calibrators were subjected to a Western blot (WB) and analyzed by each reagent. The procedure was repeated after pretreating the N Latex FLC calibrator with the reducing agent dithiothreitol (DTT).

Results

Both calibrators contain FLC dimers and monomers. Both reagents detect (with different sensitivity) FLC kappa monomers and dimers; instead, Freelite detects only FLC lambda dimers, while N Latex FLC detects only FLC monomers. After DTT treatment, only the N Latex lambda still detects FLC with reduced protein thiols, while the reactivity of all other reagents is abolished.

Conclusions

Due to their different reactivity against FLC monomers and oligomers, the Freelite and N Latex FLC are calibrated against different components of their own calibrators, making the two reagents not equivalent. The redox status of FLC determines the immunoreactivity not only of FLC dimers, but also of the monomers.


Corresponding author: Laura Caponi, MD, PhD, Department of Translational Research and New Technologies in Medicine, Laboratory of Clinical Pathology, University Hospital of Pisa, Building 43, Via Roma, 67, 56126 Pisa, Italy

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Institutional funding of University of Pisa.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538–48.10.1016/S1470-2045(14)70442-5Suche in Google Scholar PubMed

2. Graziani MS, Merlini G. Serum free light chain analysis in the diagnosis and management of multiple myeloma and related conditions. Expert Rev Mol Diagn 2014;14:55–66.10.1586/14737159.2014.864557Suche in Google Scholar PubMed

3. Jenner E. Serum free light chains in clinical laboratory diagnostics. Clin Chim Acta 2014;427:15–20.10.1016/j.cca.2013.08.018Suche in Google Scholar PubMed

4. Mollee P, Tate J, Pretorius CJ. Evaluation of the N Latex free light chain assay in the diagnosis and monitoring of AL amyloidosis. Clin Chem Lab Med 2013;51:2303–10.10.1515/cclm-2013-0361Suche in Google Scholar PubMed

5. Kim HS, Kim HS, Shin KS, Song W, Kim HJ, Kim HS, et al. Clinical comparisons of two free light chain assays to immunofixation electrophoresis for detecting monoclonal gammopathy. Biomed Res Int 2014;647238:1–7.10.1155/2014/647238Suche in Google Scholar PubMed PubMed Central

6. Carr-Smith HD, Jenner EL, Evans JA, Harding SJ. Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents. Clin Chem Lab Med 2016;54:997–1003.10.1515/cclm-2015-1068Suche in Google Scholar PubMed

7. Caponi L, Franzini M, Koni E, Masotti S, Petrini M, Paolicchi A. Discrepancy between FLC assays: only a problem of quantification? Clin Chem Lab Med 2016;54:1111–3.10.1515/cclm-2015-1262Suche in Google Scholar PubMed

8. Bossuyt X, Delforge M, Reynders M, Dillaerts D, Sprangers B, Fostier K, et al. Diagnostic thresholds for free light chains in multiple myeloma depend on the assay used. Leukemia 2017. doi: 10.1038/leu.2017.335. [Epub ahead of print].10.1038/leu.2017.335Suche in Google Scholar PubMed

9. Di Noto G, Cimpoies E, Dossi A, Paolini L, Radeghieri A, Caimi L, et al. Polyclonal versus monoclonal immunoglobulin-free light chains quantification. Ann Clin Biochem 2015;52:327–36.10.1177/0004563214553808Suche in Google Scholar PubMed

10. Kaplan B, Ramirez-Alvarado M, Sikkink L, Golderman S, Dispenzieri A, Livneh A, et al. Free light chains in plasma of patients with light chain amyloidosis and non-amyloid light chain deposition disease. High proportion and heterogeneity of disulfide-linked monoclonal free light chains as pathogenic features of amyloid disease. Br J Haematol 2009;144:705–15.10.1111/j.1365-2141.2008.07522.xSuche in Google Scholar PubMed

11. Kaplan B, Golderman S, Aizenbud B, Esev K, Kukuy O, Leiba M, et al. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: a pilot study. Am J Hematol 2014;89:882–8.10.1002/ajh.23773Suche in Google Scholar PubMed

12. te Velthuis H, Knop I, Stam P, van den Broek M, Bos HK, Hol S, et al. N Latex FLC – new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med 2011;49:1323–32.10.1515/CCLM.2011.624Suche in Google Scholar PubMed

13. Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez-Alvarado M, Thompson JR. Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 2008;283:15853–60.10.1074/jbc.M705347200Suche in Google Scholar PubMed PubMed Central

14. Palladini G, Jaccard A, Milani P, Lavergne D, Foli A, Bender S, et al. Circulating free light chain measurement in the diagnosis, prognostic assessment and evaluation of response of AL amyloidosis: comparison of Freelite and N latex FLC assays. Clin Chem Lab Med 2017;55:1734–43.10.1515/cclm-2016-1024Suche in Google Scholar PubMed

15. Pretorius CJ, Klingberg S, Tate J, Wilgen U, Ungerer JP. Evaluation of the N Latex FLC free light chain assay on the Siemens BN analyser: precision, agreement, linearity and variation between reagent lots. Ann Clin Biochem 2012;49:450–5.10.1258/acb.2012.011264Suche in Google Scholar PubMed

16. Hoedemakers RM, Pruijt JF, Hol S, Teunissen E, Martens H, Stam P, et al. Clinical comparison of new monoclonal antibody-based nephelometric assays for free light chain kappa and lambda to polyclonal antibody-based assays and immunofixation electrophoresis. Clin Chem Lab Med 2011;50:489–95.10.1515/cclm.2011.793Suche in Google Scholar PubMed

17. Lock RJ, Saleem R, Roberts EG, Wallage MJ, Pesce TJ, Rowbottom A, et al. A multicentre study comparing two methods for serum free light chain analysis. Ann Clin Biochem 2013;50:255–61.10.1177/0004563212473447Suche in Google Scholar PubMed

18. Messiaen AS, De Sloovere MM, Claus PE, Vercammen M, Van Hoovels L, Heylen O, et al. Performance evaluation of serum free light chain analysis: nephelometry vs turbidimetry, monoclonal vs polyclonal reagents. Am J Clin Pathol 2017;147:611–22.10.1093/ajcp/aqx037Suche in Google Scholar PubMed

19. Palumbo A, Rajkumar SV, San Miguel JF, Larocca A, Niesvizky R, Morgan G, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol 2014;32:587–600.10.1200/JCO.2013.48.7934Suche in Google Scholar PubMed PubMed Central

Received: 2018-04-20
Accepted: 2018-06-25
Published Online: 2018-07-23
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Obituary
  3. Jillian Russyll (AKA Jill) Tate
  4. Editorial
  5. The long way to standardization of practices: HbA1c as archetypal example
  6. Reviews
  7. Secretory tumors of the pituitary gland: a clinical biochemistry perspective
  8. Thalassemia in the laboratory: pearls, pitfalls, and promises
  9. Opinion Paper
  10. Diagnostic biomarkers of muscle injury and exertional rhabdomyolysis
  11. General Clinical Chemistry and Laboratory Medicine
  12. Patient’s knowledge and awareness about the effect of the over-the-counter (OTC) drugs and dietary supplements on laboratory test results: a survey in 18 European countries
  13. National surveys on 15 quality indicators for the total testing process in clinical laboratories of China from 2015 to 2017
  14. Urinary albumin strip assay as a screening test to replace quantitative technology in certain conditions
  15. Cerebrospinal fluid free kappa light chains and kappa index perform equal to oligoclonal bands in the diagnosis of multiple sclerosis
  16. Different immunoreactivity of monomers and dimers makes automated free light chains assays not equivalent
  17. The utility of saliva testing in the estimation of uremic toxin levels in serum
  18. Determination of cannabinoids in oral fluid and urine of “light cannabis” consumers: a pilot study
  19. Moving from the second to the third generation Roche PTH assays: what are the consequences for clinical practice?
  20. Baseline hepcidin measurement in the differential diagnosis of anaemia for elderly patients and its correlation with the increment of transferrin saturation following an oral iron absorption test
  21. Reference Values and Biological Variations
  22. A multicenter study for the evaluation of the reference interval for TSH in Italy (ELAS TSH Italian Study)
  23. Cancer Diagnostics
  24. Urinary measurement of circulating tumor DNA for treatment monitoring and prognosis of metastatic colorectal cancer patients
  25. BCL2L12: a multiply spliced gene with independent prognostic significance in breast cancer
  26. Diabetes
  27. The global impact of the International Federation of Clinical Chemistry and Laboratory Medicine, Education and Management Division: engaging stakeholders and assessing HbA1c quality in a multicentre study across China
  28. The frequency of testing for glycated haemoglobin, HbA1c, is linked to the probability of achieving target levels in patients with suboptimally controlled diabetes mellitus
  29. Letters to the Editor
  30. Response to article by Caponi et al. about serum free light chains
  31. Response to Letter to the Editor about immunochemical measurement of urine free light chains
  32. Estimated GFR-specific 99th percentiles for high-sensitive cardiac troponin T based on the adjusted analytical change limit (adjACL) in hospitalized patients
  33. Perioperative heart-type fatty acid binding protein concentration cutoffs for the identification of severe acute kidney injury in patients undergoing cardiac surgery
  34. A peculiar reaction curve with dual spikes in absorbance during a total bilirubin assay in spite of accurate results induced by high M-protein concentration
  35. Extremely low high-density-lipoprotein cholesterol due to an unusual non-inherited cause: a case report
  36. A single-center performance evaluation of the fully automated iFlash anti-Müllerian hormone immunoassay
  37. Genetic polymorphisms and variants in the LDL receptor associated with familial hypercholesterolemia: cascade screening and identification of the variants 666C>A, 862G>A, 901G>A, and 919G>A of a Brazilian family
  38. Undetected paraganglioma by functional imaging techniques: case report
  39. A particular case of AML patient with the polymorphism G105G (rs11554137) and the missense mutation R132C in IDH1 gene
  40. Atypical “hairy cell-like” presentation of leukemic mantle cell lymphoma
  41. Evaluation of a rapid centrifugation step (4500 g for 2 min) in coagulation assays to monitor direct oral anticoagulants
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2018-0412/html?lang=de
Button zum nach oben scrollen