Effects of procalcitonin testing on antibiotic use and clinical outcomes in patients with upper respiratory tract infections. An individual patient data meta-analysis
-
Jonas Odermatt
Abstract
Background:
Several trials found procalcitonin (PCT) helpful for guiding antibiotic treatment in patients with lower respiratory tract infections and sepsis. We aimed to perform an individual patient data meta-analysis on the effects of PCT guided antibiotic therapy in upper respiratory tract infections (URTI).
Methods:
A comprehensive search of the literature was conducted using PubMed (MEDLINE) and Cochrane Library to identify relevant studies published until September 2016. We reanalysed individual data of adult URTI patients with a clinical diagnosis of URTI. Data of two trials were used based on PRISMA-IPD guidelines. Safety outcomes were (1) treatment failure defined as death, hospitalization, ARI-specific complications, recurrent or worsening infection at 28 days follow-up; and (2) restricted activity within a 14-day follow-up. Secondary endpoints were initiation of antibiotic therapy, and total days of antibiotic exposure.
Results:
In total, 644 patients with a follow up of 28 days had a final diagnosis of URTI and were thus included in this analysis. There was no difference in treatment failure (33.1% vs. 34.0%, OR 1.0, 95% CI 0.7–1.4; p=0.896) and days with restricted activity between groups (8.0 vs. 8.0 days, regression coefficient 0.2 (95% CI –0.4 to 0.9), p=0.465). However, PCT guided antibiotic therapy resulted in lower antibiotic prescription (17.8% vs. 51.0%, OR 0.2, 95% CI 0.1–0.3; p<0.001) and in a 2.4 day (95% CI –2.9 to –1.9; p<0.001) shorter antibiotic exposure compared to control patients.
Conclusions:
PCT guided antibiotic therapy in the primary care setting was associated with reduced antibiotic exposure in URTI patients without compromising outcomes.
Acknowledgments
We are grateful to the physicians, their staff and patients who participated in the data collection.
Author contributions: Mr Odermatt, Ms Friedli, Mr Kutz and Mr. Schuetz had full access to all of the data in the study and take responsibility for the integrity of the data and performed the statistical work, and drafted the manuscript. All authors helped to interpret the findings, read and revised the manuscript critically for important intellectual content. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Availability of data and material: The datasets used and/or analysed during the current study is available from the corresponding author on reasonable request.
Research funding: This investigator-initiated PARTI trial was sponsored by a grant from the Swiss National Science Foundation (3300C0-107772) and by the Association for the Promotion of Science and Postgraduate Training of the University Hospital Basel. Brahms AG provided assay and kit material related to the study. Drs. Christ-Crain, Mueller, and Schuetz, received support from BRAHMS to attend meetings and fulfilled speaking engagements. Drs. Schuetz, Kutz, Christ-Crain and Mueller received support from bioMérieux to attend meetings and fulfilled speaking engagements. Heiner C. Bucher has received research support from BRAHMS. Dr. Schuetz and Dr. Christ-Crain were supported by funds of the Freiwillige Akademische Gesellschaft, the Department of Endocrinology, Diabetology and Clinical Nutrition, and the Department of Clinical Chemistry, all Basel, Switzerland.
Employment or leadership: Dr. Mueller has served as a consultant and received research support from BRAHMS and bioMérieux.
Honorarium: None declared.
Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.
References
1. Gonzales R, Steiner JF, Sande MA. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. J Am Med Assoc 1997;278:901–4.10.1001/jama.1997.03550110039033Search in Google Scholar
2. Dixon RE. Economic costs of respiratory tract infections in the United States. Am J Med 1985;78:45–51.10.1016/0002-9343(85)90363-8Search in Google Scholar
3. Evans AT, Husain S, Durairaj L, Sadowski LS, Charles-Damte M, Wang Y. Azithromycin for acute bronchitis: a randomised, double-blind, controlled trial. Lancet 2002;359:1648–54.10.1016/S0140-6736(02)08597-5Search in Google Scholar
4. Macfarlane JT, Colville A, Guion A, Macfarlane RM, Rose DH. Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community. Lancet 1993;341:511–4.10.1016/0140-6736(93)90275-LSearch in Google Scholar
5. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006;34:1589–96.10.1097/01.CCM.0000217961.75225.E9Search in Google Scholar PubMed
6. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009;136:1237–48.10.1378/chest.09-0087Search in Google Scholar PubMed
7. Lawrence KL, Kollef MH. Antimicrobial stewardship in the intensive care unit: advances and obstacles. Am J Respir Crit Care Med 2009;179:434–8.10.1164/rccm.200809-1394CPSearch in Google Scholar PubMed
8. Muller B, Becker KL. Procalcitonin: how a hormone became a marker and mediator of sepsis. Swiss Med Wkly 2001;131: 595–602.10.4414/smw.2001.09751Search in Google Scholar
9. Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W, et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 2000;28:977–83.10.1097/00003246-200004000-00011Search in Google Scholar PubMed
10. Karlsson S, Heikkinen M, Pettila V, Alila S, Vaisanen S, Pulkki K, et al. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 2010;14:R205.10.1186/cc9327Search in Google Scholar PubMed PubMed Central
11. Kutz A, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Prognostic value of procalcitonin in respiratory tract infections across clinical settings. Crit Care 2015;19:74.10.1186/s13054-015-0792-1Search in Google Scholar PubMed PubMed Central
12. Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, et al. Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch Intern Med 2008;168:2000–7.10.1001/archinte.168.18.2000Search in Google Scholar
13. Burkhardt O, Ewig S, Haagen U, Giersdorf S, Hartmann O, Wegscheider K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010;36:601–7.10.1183/09031936.00163309Search in Google Scholar
14. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 2004;363:600–7.10.1016/S0140-6736(04)15591-8Search in Google Scholar
15. Christ-Crain M, Stolz D, Bingisser R, Muller C, Miedinger D, Huber PR, et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 2006;174:84–93.10.1164/rccm.200512-1922OCSearch in Google Scholar PubMed
16. Stolz D, Christ-Crain M, Bingisser R, Leuppi J, Miedinger D, Muller C, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007;131:9–19.10.1378/chest.06-1500Search in Google Scholar PubMed
17. Kristoffersen KB, Sogaard OS, Wejse C, Black FT, Greve T, Tarp B, et al. Antibiotic treatment interruption of suspected lower respiratory tract infections based on a single procalcitonin measurement at hospital admission – a randomized trial. Clin Microbiol Infect 2009;15:481–7.10.1111/j.1469-0691.2009.02709.xSearch in Google Scholar PubMed
18. Long W, Deng X, Zhang Y, Lu G, Xie J, Tang J. Procalcitonin-guidance for reduction of antibiotic use in low-risk outpatients with community acquired pneumonia. Respirology 2011;16:819–24.10.1111/j.1440-1843.2011.01978.xSearch in Google Scholar PubMed
19. Long W, Deng XQ, Tang JG, Xie J, Zhang YC, Zhang Y, et al. [The value of serum procalcitonin in treatment of community acquired pneumonia in outpatient]. Zhonghua nei ke za zhi [Chin J Internal Med] 2009;48:216–9.Search in Google Scholar
20. Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. J Am Med Assoc 2009;302:1059–66.10.1001/jama.2009.1297Search in Google Scholar PubMed
21. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 2008;177:498–505.10.1164/rccm.200708-1238OCSearch in Google Scholar PubMed
22. Stolz D, Smyrnios N, Eggimann P, Pargger H, Thakkar N, Siegemund M, et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir Rev 2009;34:1364–75.10.1183/09031936.00053209Search in Google Scholar PubMed
23. Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010;375: 463–74.10.1016/S0140-6736(09)61879-1Search in Google Scholar
24. Schroeder S, Hochreiter M, Koehler T, Schweiger AM, Bein B, Keck FS, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg 2009;394:221–6.10.1007/s00423-008-0432-1Search in Google Scholar
25. Hochreiter M, Kohler T, Schweiger AM, Keck FS, Bein B, von Spiegel T, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 2009;13:R83.10.1186/cc7903Search in Google Scholar
26. Schuetz P, Mueller B. Biomarker-guided de-escalation of empirical therapy is associated with lower risk for adverse outcomes. Intensive Care Med 2014;40:141.10.1007/s00134-013-3139-xSearch in Google Scholar
27. de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016;16:819–27.10.1016/S1473-3099(16)00053-0Search in Google Scholar
28. Schuetz P, Briel M, Christ-Crain M, Stolz D, Bouadma L, Wolff M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012;55:651–62.10.1093/cid/cis464Search in Google Scholar
29. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD Statement. J Am Med Assoc 2015;313:1657–65.10.1001/jama.2015.3656Search in Google Scholar
30. Schuetz P, Muller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2012;9:CD007498.10.1002/14651858.CD007498.pub2Search in Google Scholar
31. Thompson SG, Turner RM, Warn DE. Multilevel models for meta-analysis, and their application to absolute risk differences. Stat Methods Med Res 2001;10:375–92.10.1177/096228020101000602Search in Google Scholar
32. Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med 2000;19:3417–32.10.1002/1097-0258(20001230)19:24<3417::AID-SIM614>3.0.CO;2-LSearch in Google Scholar
33. Burkhardt O, Ewig S, Haagen U, Giersdorf S, Hartmann O, Wegscheider K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010;36:601–7.10.1183/09031936.00163309Search in Google Scholar
34. Drozdov D, Schwarz S, Kutz A, Grolimund E, Rast AC, Steiner D, et al. Procalcitonin and pyuria-based algorithm reduces antibiotic use in urinary tract infections: a randomized controlled trial. BMC Med. 2015;13:104.10.1186/s12916-015-0347-ySearch in Google Scholar
35. Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med 2011;171:1322–31.10.1001/archinternmed.2011.318Search in Google Scholar
36. Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med 2013;368:299–302.10.1056/NEJMp1215093Search in Google Scholar
37. Meili M, Muller B, Kulkarni P, Schutz P. Management of patients with respiratory infections in primary care: procalcitonin, C-reactive protein or both? Expert Rev Respir Med 2015;9:587–601.10.1586/17476348.2015.1081063Search in Google Scholar
38. Schuetz P, Balk R, Briel M, Kutz A, Christ-Crain M, Stolz D, et al. Economic evaluation of procalcitonin-guided antibiotic therapy in acute respiratory infections: a US health system perspective. Clin Chem Lab Med 2015;53:583–92.10.1515/cclm-2014-1015Search in Google Scholar
39. Schuetz P, Birkhahn R, Sherwin R, Jones AE, Singer A, Kline JA, et al. Serial procalcitonin predicts mortality in severe sepsis patients: Results from the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study. Crit Care Med 2017;45:781–9.10.1097/CCM.0000000000002321Search in Google Scholar
40. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014;371:1619–28.10.1056/NEJMra1312885Search in Google Scholar
41. Young J, De Sutter A, Merenstein D, van Essen GA, Kaiser L, Varonen H, et al. Antibiotics for adults with clinically diagnosed acute rhinosinusitis: a meta-analysis of individual patient data. Lancet 2008;371:908–14.10.1016/S0140-6736(08)60416-XSearch in Google Scholar
42. Kutz A, Grolimund E, Christ-Crain M, Thomann R, Falconnier C, Hoess C, et al. Pre-analytic factors and initial biomarker levels in community-acquired pneumonia patients. BMC Anesthesiol 2014;14:102.10.1186/1471-2253-14-102Search in Google Scholar PubMed PubMed Central
43. Do NT, Ta NT, Tran NT, Than HM, Vu BT, Hoang LB, et al. Point-of-care C-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in Vietnamese primary health care: a randomised controlled trial. Lancet Glob Health 2016;4:e633–41.10.1016/S2214-109X(16)30142-5Search in Google Scholar
44. Cals JW, de Bock L, Beckers PJ, Francis NA, Hopstaken RM, Hood K, et al. Enhanced communication skills and C-reactive protein point-of-care testing for respiratory tract infection: 3.5-year follow-up of a cluster randomized trial. Ann Fam Med 2013;11:157–64.10.1370/afm.1477Search in Google Scholar PubMed PubMed Central
45. Zhydkov A, Christ-Crain M, Thomann R, Hoess C, Henzen C, Werner Z, et al. Utility of procalcitonin, C-reactive protein and white blood cells alone and in combination for the prediction of clinical outcomes in community-acquired pneumonia. Clin Chem Lab Med 2015;53:559–66.10.1515/cclm-2014-0456Search in Google Scholar PubMed
46. Schuetz P, Aujesky D, Muller C, Muller B. Biomarker-guided personalised emergency medicine for all – hope for another hype? Swiss Med Wkly 2015;145:w14079.10.4414/smw.2015.14079Search in Google Scholar PubMed
47. Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med 2011;9:107.10.1186/1741-7015-9-107Search in Google Scholar PubMed PubMed Central
48. Meili M, Kutz A, Briel M, Christ-Crain M, Bucher HC, Mueller B, et al. Infection biomarkers in primary care patients with acute respiratory tract infections-comparison of Procalcitonin and C-reactive protein. BMC Pulm Med 2016;16:43.10.1186/s12890-016-0206-4Search in Google Scholar PubMed PubMed Central
49. Christensen AM, Thomsen MK, Ovesen T, Klug TE. Are procalcitonin or other infection markers useful in the detection of group A streptococcal acute tonsillitis? Scand J Infect Dis 2014;46:376–83.10.3109/00365548.2014.885656Search in Google Scholar PubMed
Supplemental Material:
The online version of this article (https://doi.org/10.1515/cclm-2017-0252) offers supplementary material, available to authorized users.
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Method comparison – a practical approach based on error identification
- Review
- Neutrophil gelatinase-associated lipocalin as a risk marker in cardiovascular disease
- Mini Reviews
- α-Defensin point-of-care test for diagnosis of prosthetic joint infections: neglected role of laboratory and clinical pathologists
- The diagnostic accuracy of biomarkers for diagnosis of primary biliary cholangitis (PBC) in anti-mitochondrial antibody (AMA)-negative PBC patients: a review of literature
- Opinion Paper
- New issues on measurement of B-type natriuretic peptides
- Genetics and Molecular Diagnostics
- The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth
- General Clinical Chemistry and Laboratory Medicine
- Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry
- The effects of dry ice exposure on plasma pH and coagulation analyses
- Placental protein-13 (PP13) in combination with PAPP-A and free leptin index (fLI) in first trimester maternal serum screening for severe and early preeclampsia
- Circulating CD89-IgA complex does not predict deterioration of kidney function in Korean patients with IgA nephropathy
- Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting – strengths and weaknesses
- Performance of automated digital cell imaging analyzer Sysmex DI-60
- Reference Values and Biological Variations
- Determination of reference intervals for urinary steroid profiling using a newly validated GC-MS/MS method
- Reference intervals and longitudinal changes in copeptin and MR-proADM concentrations during pregnancy
- Definition of the upper reference limit of glycated albumin in blood donors from Italy
- Reference values of fecal calgranulin C (S100A12) in school aged children and adolescents
- Processing-independent proANP measurement for low concentrations in plasma: reference intervals and effect of body mass index and plasma glucose
- Cancer Diagnostics
- Cancer sniffer dogs: how can we translate this peculiarity in laboratory medicine? Results of a pilot study on gastrointestinal cancers
- Cardiovascular Diseases
- NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis
- Analytical evaluation of the new Beckman Coulter Access high sensitivity cardiac troponin I immunoassay
- Infectious Diseases
- Analytical evaluation of the performances of Diazyme and BRAHMS procalcitonin applied to Roche Cobas in comparison with BRAHMS PCT-sensitive Kryptor
- Effects of procalcitonin testing on antibiotic use and clinical outcomes in patients with upper respiratory tract infections. An individual patient data meta-analysis
- Acknowledgment
- Letters to the Editor
- Handling the altered test results of hemolyzed samples. Recommendations of the Quality, Management, Safety and Evidence Committee (CCGSE) of the Spanish Association of Medical Biopathology and Laboratory Medicine (AEBM-ML)
- Reply to: Analytical evaluation of the performances of Diazyme and BRAHMS procalcitonin applied to Roche Cobas in comparison with BRAHMS PCT-sensitive Kryptor
- Excessive hypercortisolemia due to ectopic Cushing’s syndrome requiring extending the reportable range for plasma cortisol for management
- Heavy chain disease: our experience
- An abnormal elevation of serum CA72-4 due to taking colchicine
- Rivaroxaban non-responders: do plasma measurements have a place?
- Next generation sequencing and immuno-histochemistry profiling identify numerous biomarkers for personalized therapy of endometrioid endometrial carcinoma
- A multicenter effort to improve comparability of vitamin B6 assays in whole blood
- PR3-anti-neutrophil cytoplasmic antibodies (ANCA) in ulcerative colitis
Articles in the same Issue
- Frontmatter
- Editorial
- Method comparison – a practical approach based on error identification
- Review
- Neutrophil gelatinase-associated lipocalin as a risk marker in cardiovascular disease
- Mini Reviews
- α-Defensin point-of-care test for diagnosis of prosthetic joint infections: neglected role of laboratory and clinical pathologists
- The diagnostic accuracy of biomarkers for diagnosis of primary biliary cholangitis (PBC) in anti-mitochondrial antibody (AMA)-negative PBC patients: a review of literature
- Opinion Paper
- New issues on measurement of B-type natriuretic peptides
- Genetics and Molecular Diagnostics
- The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth
- General Clinical Chemistry and Laboratory Medicine
- Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry
- The effects of dry ice exposure on plasma pH and coagulation analyses
- Placental protein-13 (PP13) in combination with PAPP-A and free leptin index (fLI) in first trimester maternal serum screening for severe and early preeclampsia
- Circulating CD89-IgA complex does not predict deterioration of kidney function in Korean patients with IgA nephropathy
- Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting – strengths and weaknesses
- Performance of automated digital cell imaging analyzer Sysmex DI-60
- Reference Values and Biological Variations
- Determination of reference intervals for urinary steroid profiling using a newly validated GC-MS/MS method
- Reference intervals and longitudinal changes in copeptin and MR-proADM concentrations during pregnancy
- Definition of the upper reference limit of glycated albumin in blood donors from Italy
- Reference values of fecal calgranulin C (S100A12) in school aged children and adolescents
- Processing-independent proANP measurement for low concentrations in plasma: reference intervals and effect of body mass index and plasma glucose
- Cancer Diagnostics
- Cancer sniffer dogs: how can we translate this peculiarity in laboratory medicine? Results of a pilot study on gastrointestinal cancers
- Cardiovascular Diseases
- NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis
- Analytical evaluation of the new Beckman Coulter Access high sensitivity cardiac troponin I immunoassay
- Infectious Diseases
- Analytical evaluation of the performances of Diazyme and BRAHMS procalcitonin applied to Roche Cobas in comparison with BRAHMS PCT-sensitive Kryptor
- Effects of procalcitonin testing on antibiotic use and clinical outcomes in patients with upper respiratory tract infections. An individual patient data meta-analysis
- Acknowledgment
- Letters to the Editor
- Handling the altered test results of hemolyzed samples. Recommendations of the Quality, Management, Safety and Evidence Committee (CCGSE) of the Spanish Association of Medical Biopathology and Laboratory Medicine (AEBM-ML)
- Reply to: Analytical evaluation of the performances of Diazyme and BRAHMS procalcitonin applied to Roche Cobas in comparison with BRAHMS PCT-sensitive Kryptor
- Excessive hypercortisolemia due to ectopic Cushing’s syndrome requiring extending the reportable range for plasma cortisol for management
- Heavy chain disease: our experience
- An abnormal elevation of serum CA72-4 due to taking colchicine
- Rivaroxaban non-responders: do plasma measurements have a place?
- Next generation sequencing and immuno-histochemistry profiling identify numerous biomarkers for personalized therapy of endometrioid endometrial carcinoma
- A multicenter effort to improve comparability of vitamin B6 assays in whole blood
- PR3-anti-neutrophil cytoplasmic antibodies (ANCA) in ulcerative colitis