Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?
-
Tamara Gojkovic
, Sandra Vladimirov
Abstract
Background:
Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization.
Methods:
The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis.
Results:
In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05).
Conclusions:
The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This study was financially supported by a grant from the Ministry of Education, Science and Technological Development, Serbia (Project number 175035).
Employment or leadership: None declared.
Honorarium: None declared.
Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.
References
1. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. Geneva, 2011.Suche in Google Scholar
2. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 2014;35:2950–9.10.1093/eurheartj/ehu299Suche in Google Scholar
3. National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143–421.10.1161/circ.106.25.3143Suche in Google Scholar
4. Van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol 2013;368:1–16.10.1016/j.mce.2012.06.007Suche in Google Scholar
5. Matthan NR, Zhu L, Pencina M, D’Agostino RB, Schaefer EJ, Lichtenstein AH. Sex-specific differences in the predictive value of cholesterol homeostasis markers and 10-year cardiovascular disease event rate in Framingham Offspring Study participants. J Am Heart Assoc 2013;19;2:e005066.10.1161/JAHA.112.005066Suche in Google Scholar
6. Wu WF, Wang QH, Zhang T, Mi SH, Liu Y, Wang LY. Gas chromatography analysis of serum cholesterol synthesis and absorption markers used to predict the efficacy of simvastatin in patients with coronary heart disease. Clin Biochem 2013;46:993–8.10.1016/j.clinbiochem.2013.04.003Suche in Google Scholar
7. de Mello VD, Lindström J, Eriksson JG, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Pihlajamäki J, et al. Markers of cholesterol metabolism as biomarkers in predicting diabetes in the Finnish Diabetes Prevention Study. Nutr Metab Cardiovas 2015;25:635–42.10.1016/j.numecd.2015.03.012Suche in Google Scholar
8. Weingärtner O, Lütjohann D, Vanmierlo T, Müller S, Günther L, Herrmann W, et al. Markers of enhanced cholesterol absorption are a strong predictor for cardiovascular diseases in patients without diabetes mellitus. Chem Phys Lipids 2011;164:451–6.10.1016/j.chemphyslip.2011.03.008Suche in Google Scholar
9. Silbernagel G, Fauler G, Hoffmann MM, Lütjohann D, Winkelmann BR, Boehm BO, et al. The associations of cholesterol metabolism and plasma plant sterols with all-cause and cardiovascular mortality. J Lipid Res 2010;51:2384–93.10.1194/jlr.P002899Suche in Google Scholar
10. Gylling H, Miettinen TA. Baseline intestinal absorption and synthesis of cholesterol regulate its response to hypolipidaemic treatments in coronary patients. Atherosclerosis 2002;160:477–81.10.1016/S0021-9150(01)00608-6Suche in Google Scholar
11. Kuksis A. Plasma non-cholesterol sterols. J Chromatogr A 2001;935:203–36.10.1016/S0021-9673(01)01226-2Suche in Google Scholar
12. Pedersen TR, Kjekshus J, Berg K, Haghfelt T, Faergeman O, Faergeman G, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Atheroscler Suppl 2004;5:81–7.10.1016/j.atherosclerosissup.2004.08.027Suche in Google Scholar
13. Matthan NR, Resteghini N, Robertson M, Ford I, Shepherd J, Packard C, et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial. J Lipid Res 2010;51:202–9.10.1194/jlr.M900032-JLR200Suche in Google Scholar
14. Chan YM, Varady KA, Lin Y, Trautwein E, Mensink RP, Plat J, et al. Plasma concentrations of plant sterols: physiology and relationship with coronary heart disease. Nutr Rev 2006;64:385–402.10.1111/j.1753-4887.2006.tb00224.xSuche in Google Scholar
15. Vekic J, Topic A, Zeljkovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. LDL and HDL subclasses and their relationship with Framingham risk score in middle-aged Serbian population. Clin Biochem 2007;40:310–6.10.1016/j.clinbiochem.2006.11.013Suche in Google Scholar
16. Rizzo M, Berneis K. Low-density lipoprotein size and cardiovascular risk assessment. QJM 2006;99:1–14.10.1093/qjmed/hci154Suche in Google Scholar
17. Van Himbergen TM, Matthan NR, Resteghini NA, Otokozawa S, Ai M, Stein EA, et al. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J Lipid Res 2009;50:730–9.10.1194/jlr.P800042-JLR200Suche in Google Scholar
18. Rainwater DL, Moore PH, Shelledy WR, Dyer TD. Characterization of acomposite gradient gel for the electrophoretic separation of lipoproteins. J Lipid Res 1997;38:1261–6.10.1016/S0022-2275(20)37207-2Suche in Google Scholar
19. Zeljkovic A, Spasojevic-Kalimanovska V, Vekic J, Jelic-Ivanovic Z, Topic A, Bogavac-Stanojevic N, et al. Does simultaneous determination of LDL and HDL particle size improve prediction of coronary artery disease risk? Clin Exp Med 2008;8:109–16.10.1007/s10238-008-0165-zSuche in Google Scholar PubMed
20. Miettinen TA, Gylling H, Strandberg T, Sarna S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. Br Med J 1998;316:1127–30.10.1136/bmj.316.7138.1127Suche in Google Scholar PubMed PubMed Central
21. Matthan NR, Giovanni A, Schaefer EJ, Brown BG, Lichtenstein AH. Impact of simvastatin, niacin, and/or antioxidants on cholesterol metabolism in CAD patients with low HDL. J Lipid Res 2003;44:800–6.10.1194/jlr.M200439-JLR200Suche in Google Scholar PubMed
22. Davis HR Jr, Altmann SW. Niemann-Pick C1 like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta 2009;1791:679–83.10.1016/j.bbalip.2009.01.002Suche in Google Scholar PubMed
23. Hoenig MR, Kostner KM, Read SJ, Walker PJ, Atherton JJ. Implications of the obesity epidemic for statin therapy: shifting cholesterol metabolism to a high synthesis and low dietary absorption state. Endocr Metab Immune 2007;7:153–66.10.2174/187153007781662567Suche in Google Scholar PubMed
24. Miettinen TA, Gylling H. Synthesis and absorption markers of cholesterol in serum and lipoproteins during a large dose of statin treatment. Eur J Clin Invest 2003;33:976–82.10.1046/j.1365-2362.2003.01229.xSuche in Google Scholar PubMed
25. Weingärtner O, Böhm M, Laufs U. Controversial role of plant sterol esters in the management of hypercholesterolaemia. Eur Heart J 2009;30:404–9.10.1093/eurheartj/ehn580Suche in Google Scholar PubMed PubMed Central
26. AbuMweis SS, Jones PJ. Cholesterol-lowering effect of plant sterols. Curr Atheroscler Rep 2008;10:467–72.10.1007/s11883-008-0073-4Suche in Google Scholar PubMed
27. AbuMweis SS, Marinangeli CP, Frohlich J, Jones PJ. Implementing phytosterols into medical practice as a cholesterol-lowering strategy: overview of efficacy, effectiveness, and safety. Can J Cardiol 2014;30:1225–32.10.1016/j.cjca.2014.04.022Suche in Google Scholar PubMed
28. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014;232:346–60.10.1016/j.atherosclerosis.2013.11.043Suche in Google Scholar PubMed
29. Sialvera TE, Pounis GD, Koutelidakis AE, Richter DJ, Yfanti G, Kapsokefalou M, et al. Phytosterols supplementation decreases plasma small and dense LDL levels in metabolic syndrome patients on a westernized type diet. Nutr Metab Cardiovasc Dis 2012;22:843–8.10.1016/j.numecd.2010.12.004Suche in Google Scholar PubMed
30. Vivancos M, Moreno JJ. Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 2008;99:1199–207.10.1017/S0007114507876203Suche in Google Scholar PubMed
31. Santosa S, Varady KA, AbuMweis S, Jones PJ. Physiological and therapeutic factors affecting cholesterol metabolism: does a reciprocal relationship between cholesterol absorption and synthesis really exist? Life Sci 2007;16;80:505–14.10.1016/j.lfs.2006.10.006Suche in Google Scholar PubMed
32. Rizzo M, Perez-Martinez P, Nikolic D, Montalto G, Lopez-Miranda J. Emerging approaches for the treatment of hypertriglyceridemia. Expert Opin Pharmacother 2013;14:1869–73.10.1517/14656566.2013.823402Suche in Google Scholar PubMed
33. Xu RX, Guo YL, Li XL, Li S, Li JJ. Impact of short-term low-dose atorvastatin on low-density lipoprotein and high-density lipoprotein subfraction phenotype. Clin Exp Pharmacol Physiol 2014;41:475–81.10.1111/1440-1681.12243Suche in Google Scholar PubMed
34. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 2006;58:342–74.10.1124/pr.58.3.1Suche in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorials
- Targeting errors in microbiology: the case of the Gram stain
- Time for a holistic approach and standardization education in laboratory medicine
- Reviews
- Serum uric acid levels and risk of prehypertension: a meta-analysis
- Lactic acidosis: an update
- Mini Review
- Progress and impact of enzyme measurement standardization
- Opinion Paper
- Critical comments to a recent EFLM recommendation for the review of reference intervals
- IFCC Paper
- Quality Indicators in Laboratory Medicine: the status of the progress of IFCC Working Group “Laboratory Errors and Patient Safety” project
- Genetics and Molecular Diagnostics
- Evaluation and comparison of three assays for molecular detection of spinal muscular atrophy
- General Clinical Chemistry and Laboratory Medicine
- Risk analysis of the preanalytical process based on quality indicators data
- Analytical and clinical validation of the new Abbot Architect 25(OH)D assay: fit for purpose?
- Looking beyond linear regression and Bland-Altman plots: a comparison of the clinical performance of 25-hydroxyvitamin D tests
- Next-generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: interlaboratory method validation and experience
- Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS
- Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma
- Development of a rapid and quantitative lateral flow assay for the simultaneous measurement of serum κ and λ immunoglobulin free light chains (FLC): inception of a new near-patient FLC screening tool
- A real-world evidence-based approach to laboratory reorganization using e-Valuate benchmarking data
- Cancer Diagnostics
- Utility of proGRP as a tumor marker in the medullary thyroid carcinoma
- Cardiovascular Diseases
- Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?
- Infectious Diseases
- Improving Gram stain proficiency in hospital and satellite laboratories that do not have microbiology
- Diabetes
- Volumetric absorptive microsampling at home as an alternative tool for the monitoring of HbA1c in diabetes patients
- Corrigendum
- EFLM Recommendation
- Corrigendum to: Recommendation for the review of biological reference intervals in medical laboratories
- Letters to the Editor
- Evaluation of the trueness of serum alkaline phosphatase measurement in a group of Italian laboratories
- Innovative software for recording preanalytical errors in accord with the IFCC quality indicators
- Mixing studies for abnormal coagulation screen – the current trend
- Identification of 5-fluorocytosine as a new interfering compound in serum capillary zone electrophoresis
- How to define reference intervals to rule in healthy individuals for clinical trials?
- Evaluation of the performance of INDEXOR® in the archive unit of a clinical laboratory: a step to Lean laboratory
- Evaluation of an automated chemiluminescent immunoassay for salivary cortisol measurement. Utility in the diagnosis of Cushing’s syndrome
- Analysis of hemolysis, icterus and lipemia in arterial blood gas specimens
- Comparison of three routine insulin immunoassays: implications for assessment of insulin sensitivity and response
Artikel in diesem Heft
- Frontmatter
- Editorials
- Targeting errors in microbiology: the case of the Gram stain
- Time for a holistic approach and standardization education in laboratory medicine
- Reviews
- Serum uric acid levels and risk of prehypertension: a meta-analysis
- Lactic acidosis: an update
- Mini Review
- Progress and impact of enzyme measurement standardization
- Opinion Paper
- Critical comments to a recent EFLM recommendation for the review of reference intervals
- IFCC Paper
- Quality Indicators in Laboratory Medicine: the status of the progress of IFCC Working Group “Laboratory Errors and Patient Safety” project
- Genetics and Molecular Diagnostics
- Evaluation and comparison of three assays for molecular detection of spinal muscular atrophy
- General Clinical Chemistry and Laboratory Medicine
- Risk analysis of the preanalytical process based on quality indicators data
- Analytical and clinical validation of the new Abbot Architect 25(OH)D assay: fit for purpose?
- Looking beyond linear regression and Bland-Altman plots: a comparison of the clinical performance of 25-hydroxyvitamin D tests
- Next-generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: interlaboratory method validation and experience
- Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS
- Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma
- Development of a rapid and quantitative lateral flow assay for the simultaneous measurement of serum κ and λ immunoglobulin free light chains (FLC): inception of a new near-patient FLC screening tool
- A real-world evidence-based approach to laboratory reorganization using e-Valuate benchmarking data
- Cancer Diagnostics
- Utility of proGRP as a tumor marker in the medullary thyroid carcinoma
- Cardiovascular Diseases
- Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?
- Infectious Diseases
- Improving Gram stain proficiency in hospital and satellite laboratories that do not have microbiology
- Diabetes
- Volumetric absorptive microsampling at home as an alternative tool for the monitoring of HbA1c in diabetes patients
- Corrigendum
- EFLM Recommendation
- Corrigendum to: Recommendation for the review of biological reference intervals in medical laboratories
- Letters to the Editor
- Evaluation of the trueness of serum alkaline phosphatase measurement in a group of Italian laboratories
- Innovative software for recording preanalytical errors in accord with the IFCC quality indicators
- Mixing studies for abnormal coagulation screen – the current trend
- Identification of 5-fluorocytosine as a new interfering compound in serum capillary zone electrophoresis
- How to define reference intervals to rule in healthy individuals for clinical trials?
- Evaluation of the performance of INDEXOR® in the archive unit of a clinical laboratory: a step to Lean laboratory
- Evaluation of an automated chemiluminescent immunoassay for salivary cortisol measurement. Utility in the diagnosis of Cushing’s syndrome
- Analysis of hemolysis, icterus and lipemia in arterial blood gas specimens
- Comparison of three routine insulin immunoassays: implications for assessment of insulin sensitivity and response