Home Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents
Article
Licensed
Unlicensed Requires Authentication

Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents

  • Hugh D. Carr-Smith EMAIL logo , Ellen L. Jenner , Josie A.R. Evans and Stephen J. Harding
Published/Copyright: March 4, 2016

Abstract

Serum free light chain (FLC) assays have been incorporated into routine clinical practice and their use is recommended in international guidelines for the management of monoclonal gammopathies. Given that FLCs are not simple analytes, laboratories should be aware of potential analytical issues when using FLC assays, including antigen excess, lot-to-lot variation and non-linearity. Whilst manufacturers of monoclonal antibody-based assays claim that they overcome such issues, the evidence available to date does not support this. Here we review and compare the technical performance of both polyclonal and monoclonal antibody-based assays. The evidence suggests that the Freelite assay, based on polyclonal antisera, gives a broader recognition of monoclonal FLCs than the N Latex assay, based on monoclonal antisera, and despite being cited as a technical concern, we show that lot-to-lot variation of the Freelite assay is good. Both non-linearity and antigen excess are characteristic of FLC analysis and laboratories should be aware of these phenomena regardless of the assay system they use. Comparisons of the absolute values of sFLCs determined using monoclonal and polyclonal antibody-based assays show poor quantitative agreement and, because current guidelines have been established using the polyclonal antibody-based Freelite assay, it should not be assumed that assays utilizing monoclonal antibodies will give compliance with these guidelines.


Corresponding author: Hugh D. Carr-Smith, The Binding Site Ltd., Birmingham, B15 1QT, UK

References

1. Bradwell AR, Carr-Smith HD, Mead GP, Harvey TC, Drayson MT. Serum test for assessment of patients with Bence Jones myeloma. Lancet 2003;361:489–91.10.1016/S0140-6736(03)12457-9Search in Google Scholar

2. Drayson M, Tang LX, Drew R, Mead GP, Carr-Smith H, Bradwell AR. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood 2001;97:2900–2.10.1182/blood.V97.9.2900Search in Google Scholar

3. Lachmann HJ, Gallimore R, Gillmore JD, Carr-Smith HD, Bradwell AR, Pepys MB, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol 2003;122:78–84.10.1046/j.1365-2141.2003.04433.xSearch in Google Scholar

4. Fuchida SI, Okano A, Hatsuse M, Murakami S, Haruyama H, Itoh S, et al. Serial measurement of free light chain detects poor response to therapy early in three patients with multiple myeloma who have measurable M-proteins. Int J Hematol 2012;96:664–8.10.1007/s12185-012-1164-0Search in Google Scholar

5. Brioli A, Giles H, Pawlyn C, Campbell J, Kaiser M, Melchor L, et al. Serum free light chain evaluation as a marker for the impact of intra-clonal heterogeneity on the progression and treatment resistance in multiple myeloma. Blood 2014;123:3414–9.10.1182/blood-2013-12-542662Search in Google Scholar

6. Hutchison CA, Plant T, Drayson M, Cockwell P, Kountouri M, Basnayake K, et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol 2008;9:11.10.1186/1471-2369-9-11Search in Google Scholar

7. Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 2008;111:785–9.10.1182/blood-2007-08-108357Search in Google Scholar

8. Rajkumar SV, Kyle RA, Therneau TM, Melton LJ, III, Bradwell AR, Clark RJ, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005;106:812–7.10.1182/blood-2005-03-1038Search in Google Scholar

9. Rajkumar SV, Dimopolous MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15:e538–48.10.1016/S1470-2045(14)70442-5Search in Google Scholar

10. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23:215–24.10.1038/leu.2008.307Search in Google Scholar PubMed

11. Tate JR, Mollee P, Dimeski G, Carter AC, Gill D. Analytical performance of serum free light-chain assay during monitoring of patients with monoclonal light-chain diseases. Clin Chim Acta 2007;376:30–6.10.1016/j.cca.2006.07.011Search in Google Scholar PubMed

12. Murata K, Clark RJ, Lockington KS, Tostrud LJ, Greipp PR, Katzmann JA. Sharply increased serum free light-chain concentrations after treatment for multiple myeloma. Clin Chem 2010;56:16–8.10.1373/clinchem.2009.133041Search in Google Scholar PubMed

13. Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 2001;47:673–80.10.1093/clinchem/47.4.673Search in Google Scholar

14. Cavalcanti E, Barchiesi V, Cuomo M, Di Paola F, Morabito F, Cavalcanti S. A particular case of lambda chain multiple myeloma. Biochimica Clinica 2013;37:428–30.Search in Google Scholar

15. Hoedemakers RM, Pruijt JF, Hol S, Teunissen E, Martens H, Stam P, et al. Clinical comparison of new monoclonal antibody-based nephelometric assays for free light chain kappa and lambda to polyclonal antibody-based assays and immunofixation electrophoresis. Clin Chem Lab Med 2011;50:489–95.10.1515/cclm.2011.793Search in Google Scholar PubMed

16. Lock R, Saleem R, Roberts E, Wallage M, Pesce T, Rowbottom A, et al. A multicentre study comparing two methods for serum free light chain analysis. Ann Clin Biochem 2013;50:255–61.10.1177/0004563212473447Search in Google Scholar PubMed

17. Pretorius CJ, Klingberg S, Tate J, Wilgen U, Ungerer JP. Evaluation of the N Latex FLC free light chain assay on the Siemens BN analyser: precision, agreement, linearity and variation between reagent lots. Ann Clin Biochem 2012;49(Pt 5):450–5.10.1258/acb.2012.011264Search in Google Scholar PubMed

18. Schneider N, Wynckel A, Kolb B, Sablon E, Gillery P, Maquart FX. [Comparative analysis of immunoglobulin free light chains quantification by Freelite (The Binding Site) and N Latex FLC (Siemens) methods]. Ann Biol Clin (Paris) 2013;71:13–9.10.1684/abc.2012.0785Search in Google Scholar PubMed

19. Kubicki T, Dytfeld D, Baszczuk A, Lewandowski K, Komarnicki M. Polyclonal based serum free light chains assessment better than monoclonal based test characterizes disease activity in patients with multiple myeloma. Presented at Lymphoma and Myeloma 2015;P5a.Search in Google Scholar

20. van Velzen JF, van den Blink D, Bloem AC. Inability of a monoclonal anti-light chain antibody to detect clonal plasma cells in a patient with multiple myeloma by multicolor flow cytometry. Cytometry B Clin Cytom 2013;84:30–2.10.1002/cyto.b.21044Search in Google Scholar PubMed

21. Jacobs JF, Hoedemakers RM, Teunissen E, van der Molen RG, Te VH. Effect of sample dilution on two free light chain nephelometric assays. Clin Chim Acta 2012;413:1708–9.10.1016/j.cca.2012.04.032Search in Google Scholar PubMed

22. Sharrod-Cole H, Matters D, Showell P, Harding S. Serum free light chain assessments: Comparison of precision and linearity. Biochmica Clinica 2013;37(SS):T390a.Search in Google Scholar

23. Bosmann M, Kossler J, Stolz H, Walter U, Knop S, Steigerwald U. Detection of serum free light chains: the problem with antigen excess. Clin Chem Lab Med 2010;48:1419–22.10.1515/CCLM.2010.283Search in Google Scholar PubMed

24. Vercammen M, Meirlaen P, Broodtaerts L, Broek IV, Bossuyt X. Effect of sample dilution on serum free light chain concentration by immunonephelometric assay. Clin Chim Acta 2011;412: 1798–804.10.1016/j.cca.2011.06.021Search in Google Scholar PubMed

25. Burden JM, Matters DJ, Carr-Smith HD, Young P, Harding SJ. Comparison of Freelite and N Latex FLC utilising diagnostically relevant samples. Clin Chem 2012;58(Suppl 10):C44a.Search in Google Scholar

26. Harding SJ, Popat R, Berlanga O, Sharrod H, Cavenagh J, Oakervee H. Comparison of the analytical performance of polyclonal and monoclonal antibody based FLC assays in refractory multiple myeloma patients. Clin Chem 2013;59 (Suppl 10):A22a.Search in Google Scholar

27. te Velthuis H, Knop I, Stam P, van den Broek M, Bos HK, Hol S, et al. N Latex FLC – new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med 2011;49:1323–32.10.1515/CCLM.2011.624Search in Google Scholar PubMed

28. Leung N, Gertz MA, Zeldenrust SR, Rajkumar SV, Dispenzieri A, Fervenza FC, et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int 2008;73:1282–8.10.1038/ki.2008.108Search in Google Scholar PubMed

29. Hutchison CA, Cockwell P, Cook M. Diagnostic accuracy of monoclonal antibody based serum immunoglobulin free light chain immunoassays in myeloma cast nephropathy. BMC Clin Pathol 2012;12:12.10.1186/1472-6890-12-12Search in Google Scholar PubMed PubMed Central

30. Hutchison CA, Harding S, Hewins P, Mead GP, Townsend J, Bradwell AR, et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol 2008;3:1684–90.10.2215/CJN.02290508Search in Google Scholar PubMed PubMed Central

31. Jacobs JF, Hoedemakers RM, Teunissen E, Te VH. N Latex FLC serum free light-chain assays in patients with renal impairment. Clin Chem Lab Med 2014;52:853–9.10.1515/cclm-2013-0864Search in Google Scholar PubMed

32. Tate J, Bazeley S, Klingberg S, Pretorius CJ, Hawley C, Mollee P. Comparison of the Freelite and N Latex serum free light chain (FLC) assays in chronic kidney disease. Clin Biochem Rev 2012;33(Supplement):P53a.Search in Google Scholar

Received: 2015-11-2
Accepted: 2016-1-21
Published Online: 2016-3-4
Published in Print: 2016-6-1

©2016 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Protein electrophoresis and serum free light chains in the diagnosis and monitoring of plasma cell disorders: laboratory testing and current controversies
  4. Laboratory Testing as Recommended by the Guidelines and the International Myeloma Working Group
  5. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias
  6. Free light chain testing for the diagnosis, monitoring and prognostication of AL amyloidosis
  7. Laboratory testing in monoclonal gammopathy of renal significance (MGRS)
  8. The impact of renal function on the clinical performance of FLC measurement in AL amyloidosis
  9. Serum and Urine Protein Electrophoresis and Immunofixation Testing
  10. Challenges of measuring monoclonal proteins in serum
  11. Screening immunofixation should replace protein electrophoresis as the initial investigation of monoclonal gammopathy: Point
  12. Should routine laboratories stop doing screening serum protein electrophoresis and replace it with screening immune-fixation electrophoresis? No quick fixes: Counterpoint
  13. Moving towards harmonized reporting of serum and urine protein electrophoresis
  14. Multiple qualitative and quantitative methods for free light chain analysis are necessary as first line tests for AL amyloidosis
  15. Use of isoelectric focusing to discriminate transient oligoclonal bands from monoclonal protein in treated myeloma
  16. New patterns of relapse in multiple myeloma: a case of “light chain escape” in which FLC predicted relapse earlier than urine and serum immunofixation
  17. Serum Free Light Chain Methods and Controversies
  18. Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents
  19. Measurement of free light chains with assays based on monoclonal antibodies
  20. Measurement of free light chains – pros and cons of current methods
  21. Is accuracy of serum free light chain measurement achievable?
  22. Performance goals for immunoglobulins and serum free light chain measurements in plasma cell dyscrasias can be based on biological variation
  23. A patient with AL amyloidosis with negative free light chain results
  24. Strengths and weaknesses of methods for identifying monoclonal free light chains of Ig: examples from two cases with renal disease
  25. Comparison of Freelite™ and N Latex serum free light chain assays in subjects with end stage kidney disease on haemodialysis
  26. New Laboratory Assays and Challenges
  27. Quantification of β-region IgA monoclonal proteins – should we include immunochemical Hevylite® measurements? Point
  28. Quantification of β region IgA paraproteins – should we include immunochemical “heavy/light chain” measurements? Counterpoint
  29. Free light chains and heavy/light chains in monitoring POEMS patients
  30. Monitoring free light chains in serum using mass spectrometry
  31. Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation
  32. Monitoring multiple myeloma patients treated with daratumumab: teasing out monoclonal antibody interference
  33. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA)
  34. Letter to the Editor
  35. Discrepancy between FLC assays: only a problem of quantification?
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cclm-2015-1068/pdf
Scroll to top button