The impact of renal function on the clinical performance of FLC measurement in AL amyloidosis
-
Giovanni Palladini
, Paolo Milani
Abstract
Background: The measurement of circulating free light chains (FLC) is of utmost importance in immunoglobulin light chain (AL) amyloidosis, being a fundamental part of the diagnostic workup, prognostic stratification and assessment of response to therapy. Renal failure is a common feature of AL amyloidosis and can considerably affect the concentration of FLC.
Methods: We assessed the impact of renal failure on the clinical performance of the Freelite assay in 982 consecutive, newly diagnosed patients with AL amyloidosis, 822 with estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2, and 160 with eGFR <30 mL/min/1.73 m2.
Results: The diagnostic sensitivity of the κ/λ FLC ratio was lower for λ amyloidogenic FLC in patients with renal failure (81% vs. 60%, p<0.001) and the FLC concentration had no independent prognostic significance in patients with severe renal dysfunction. However, FLC response to chemotherapy could still discriminate patients with better outcome.
Conclusions: Renal failure is a relevant interference factor when using the Freelite assay for the identification of the amyloidogenic light chain and for prognostic assessment in patients with AL amyloidosis and renal failure.
References
1. Graziani MS, Merlini G. Serum free light chain analysis in the diagnosis and management of multiple myeloma and related conditions. Expert Rev Mol Diagn 2014;14:55–66.10.1586/14737159.2014.864557Search in Google Scholar PubMed
2. Lavatelli F, Albertini R, Di Fonzo A, Palladini G, Merlini G. Biochemical markers in early diagnosis and management of systemic amyloidoses. Clin Chem Lab Med 2014;52:1517–31.10.1515/cclm-2014-0235Search in Google Scholar PubMed
3. Diomede L, Rognoni P, Lavatelli F, Romeo M, Del Favero E, Cantù L, et al. A caenorhabditis elegans-based assay recognizes immunoglobulin light chains causing heart amyloidosis. Blood 2014;123:3543–52.10.1182/blood-2013-10-525634Search in Google Scholar PubMed PubMed Central
4. Bochtler T, Hegenbart U, Heiss C, Benner A, Cremer F, Volkmann M, et al. Evaluation of the serum-free light chain test in untreated patients with al amyloidosis. Haematologica 2008;93:459–62.10.3324/haematol.11687Search in Google Scholar PubMed
5. Katzmann J, Kyle R, Benson J, Larson D, Snyder M, Lust J, et al. Screening panels for detection of monoclonal gammopathies. Clin Chem 2009;55:1517–22.10.1373/clinchem.2009.126664Search in Google Scholar PubMed PubMed Central
6. Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F, et al. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem 2009;55:499–504.10.1373/clinchem.2008.117143Search in Google Scholar PubMed
7. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 2012;30:989–95.10.1200/JCO.2011.38.5724Search in Google Scholar PubMed PubMed Central
8. Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 2012;30:4541–9.10.1200/JCO.2011.37.7614Search in Google Scholar PubMed
9. Palladini G, Hegenbart U, Milani P, Kimmich C, Foli A, Ho AD, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in al amyloidosis. Blood 2014;124:2325–32.10.1182/blood-2014-04-570010Search in Google Scholar PubMed
10. Hutchison CA, Harding S, Hewins P, Mead GP, Townsend J, Bradwell AR, et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol 2008;3:1684–90.10.2215/CJN.02290508Search in Google Scholar PubMed PubMed Central
11. Hutchison CA, Plant T, Drayson M, Cockwell P, Kountouri M, Basnayake K, et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol 2008;9:11.10.1186/1471-2369-9-11Search in Google Scholar PubMed PubMed Central
12. Pinney JH, Lachmann HJ, Bansi L, Wechalekar AD, Gilbertson JA, Rowczenio D, et al. Outcome in renal al amyloidosis after chemotherapy. J Clin Oncol 2011;29:674–81.10.1200/JCO.2010.30.5235Search in Google Scholar PubMed
13. Fernández de Larrea C, Verga L, Morbini P, Klersy C, Lavatelli F, Foli A, et al. A practical approach to the diagnosis of systemic amyloidoses. Blood 2015;125:2239–44.10.1182/blood-2014-11-609883Search in Google Scholar PubMed
14. Brambilla F, Lavatelli F, Di Silvestre D, Valentini V, Rossi R, Palladini G, et al. Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood 2012;119:1844–7.10.1182/blood-2011-07-365510Search in Google Scholar PubMed
15. Dispenzieri A, Gertz M, Kyle R, Lacy M, Burritt M, Therneau T, et al. Serum cardiac troponins and n-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004;22:3751–7.10.1201/9781420037494-24Search in Google Scholar
16. Palladini G, Milani P, Foli A, Obici L, Lavatelli F, Nuvolone M, et al. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in al amyloidosis: long-term results of a risk-adapted approach. Haematologica 2014;99:743–50.10.3324/haematol.2013.095463Search in Google Scholar PubMed PubMed Central
17. Jeppsson JO, Laurell CB, Franzén B. Agarose gel electrophoresis. Clin Chem 1979;25:629–38.10.1093/clinchem/25.4.629Search in Google Scholar
18. Palladini G, Foli A, Milani P, Russo P, Albertini R, Lavatelli F, et al. Best use of cardiac biomarkers in patients with al amyloidosis and renal failure. Am J Hematol 2012;87:465–71.10.1002/ajh.23141Search in Google Scholar PubMed
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- Protein electrophoresis and serum free light chains in the diagnosis and monitoring of plasma cell disorders: laboratory testing and current controversies
- Laboratory Testing as Recommended by the Guidelines and the International Myeloma Working Group
- Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias
- Free light chain testing for the diagnosis, monitoring and prognostication of AL amyloidosis
- Laboratory testing in monoclonal gammopathy of renal significance (MGRS)
- The impact of renal function on the clinical performance of FLC measurement in AL amyloidosis
- Serum and Urine Protein Electrophoresis and Immunofixation Testing
- Challenges of measuring monoclonal proteins in serum
- Screening immunofixation should replace protein electrophoresis as the initial investigation of monoclonal gammopathy: Point
- Should routine laboratories stop doing screening serum protein electrophoresis and replace it with screening immune-fixation electrophoresis? No quick fixes: Counterpoint
- Moving towards harmonized reporting of serum and urine protein electrophoresis
- Multiple qualitative and quantitative methods for free light chain analysis are necessary as first line tests for AL amyloidosis
- Use of isoelectric focusing to discriminate transient oligoclonal bands from monoclonal protein in treated myeloma
- New patterns of relapse in multiple myeloma: a case of “light chain escape” in which FLC predicted relapse earlier than urine and serum immunofixation
- Serum Free Light Chain Methods and Controversies
- Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents
- Measurement of free light chains with assays based on monoclonal antibodies
- Measurement of free light chains – pros and cons of current methods
- Is accuracy of serum free light chain measurement achievable?
- Performance goals for immunoglobulins and serum free light chain measurements in plasma cell dyscrasias can be based on biological variation
- A patient with AL amyloidosis with negative free light chain results
- Strengths and weaknesses of methods for identifying monoclonal free light chains of Ig: examples from two cases with renal disease
- Comparison of Freelite™ and N Latex serum free light chain assays in subjects with end stage kidney disease on haemodialysis
- New Laboratory Assays and Challenges
- Quantification of β-region IgA monoclonal proteins – should we include immunochemical Hevylite® measurements? Point
- Quantification of β region IgA paraproteins – should we include immunochemical “heavy/light chain” measurements? Counterpoint
- Free light chains and heavy/light chains in monitoring POEMS patients
- Monitoring free light chains in serum using mass spectrometry
- Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation
- Monitoring multiple myeloma patients treated with daratumumab: teasing out monoclonal antibody interference
- Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA)
- Letter to the Editor
- Discrepancy between FLC assays: only a problem of quantification?
Articles in the same Issue
- Frontmatter
- Editorial
- Protein electrophoresis and serum free light chains in the diagnosis and monitoring of plasma cell disorders: laboratory testing and current controversies
- Laboratory Testing as Recommended by the Guidelines and the International Myeloma Working Group
- Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias
- Free light chain testing for the diagnosis, monitoring and prognostication of AL amyloidosis
- Laboratory testing in monoclonal gammopathy of renal significance (MGRS)
- The impact of renal function on the clinical performance of FLC measurement in AL amyloidosis
- Serum and Urine Protein Electrophoresis and Immunofixation Testing
- Challenges of measuring monoclonal proteins in serum
- Screening immunofixation should replace protein electrophoresis as the initial investigation of monoclonal gammopathy: Point
- Should routine laboratories stop doing screening serum protein electrophoresis and replace it with screening immune-fixation electrophoresis? No quick fixes: Counterpoint
- Moving towards harmonized reporting of serum and urine protein electrophoresis
- Multiple qualitative and quantitative methods for free light chain analysis are necessary as first line tests for AL amyloidosis
- Use of isoelectric focusing to discriminate transient oligoclonal bands from monoclonal protein in treated myeloma
- New patterns of relapse in multiple myeloma: a case of “light chain escape” in which FLC predicted relapse earlier than urine and serum immunofixation
- Serum Free Light Chain Methods and Controversies
- Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents
- Measurement of free light chains with assays based on monoclonal antibodies
- Measurement of free light chains – pros and cons of current methods
- Is accuracy of serum free light chain measurement achievable?
- Performance goals for immunoglobulins and serum free light chain measurements in plasma cell dyscrasias can be based on biological variation
- A patient with AL amyloidosis with negative free light chain results
- Strengths and weaknesses of methods for identifying monoclonal free light chains of Ig: examples from two cases with renal disease
- Comparison of Freelite™ and N Latex serum free light chain assays in subjects with end stage kidney disease on haemodialysis
- New Laboratory Assays and Challenges
- Quantification of β-region IgA monoclonal proteins – should we include immunochemical Hevylite® measurements? Point
- Quantification of β region IgA paraproteins – should we include immunochemical “heavy/light chain” measurements? Counterpoint
- Free light chains and heavy/light chains in monitoring POEMS patients
- Monitoring free light chains in serum using mass spectrometry
- Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation
- Monitoring multiple myeloma patients treated with daratumumab: teasing out monoclonal antibody interference
- Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA)
- Letter to the Editor
- Discrepancy between FLC assays: only a problem of quantification?