Startseite Quantification of vancomycin in human serum by LC-MS/MS
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantification of vancomycin in human serum by LC-MS/MS

  • Katrin König EMAIL logo , Uwe Kobold , Gerhard Fink , Andreas Leinenbach , Thomas Dülffer , Roland Thiele , Johannes Zander und Michael Vogeser
Veröffentlicht/Copyright: 11. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Background: The aim of our work was to develop and validate a reliable LC-MS/MS-based measurement procedure for the quantification of vancomycin in serum, to be applied in the context of efforts to standardize and harmonize therapeutic drug monitoring of this compound using routine assays.

Methods: Sample preparation was based on protein precipitation followed by ultrafiltration. In order to minimize differential modulation of ionization by matrix constituents extended chromatographic separation was applied leading to a retention time of 9.8 min for the analyte. Measurement was done by HPLC-ESI-MS/MS. For internal standardization the derivative vancomycin-glycin (ISTD) prepared by chemical synthesis was used, HPLC conditions ensured coelution of ISTD with the analyte.

Results: In a bi-center validation total CVs of <4% were observed for quality control material ranging from 5.3 mg/L to 79.4 mg/L; accuracy was ±4%. No relevant ion suppression was observed. Comparative measurement of aliquots from 70 samples at the two validation sites demonstrated close agreement.

Conclusions: Employing a closely related homologue molecule for internal standardization and the use of MS/MS following highly efficient sample pre-fractionation by HPLC, the method described here can be considered to offer the highest level of analytical reliability realized so far for the quantification of vancomycin in human serum. Thus, the method is suitable to be used in a comprehensive reference measurement system for vancomycin.


Corresponding author: Katrin König, Institute of Laboratory Medicine, Hospital of the University of Munich, Marchioninistrasse 15, 81375 Munich, Germany, Phone: +49 89 70953221

We thank the Referenzinstitut für Bioanalytik (RfB) for the permission to report the results of a vancomycin proficiency testing program.

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

References

1. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr., Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm 2009;66:82–98.10.2146/ajhp080434Suche in Google Scholar

2. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 2012;73:27–36.10.1111/j.1365-2125.2011.04080.xSuche in Google Scholar

3. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 2004;43:925–42.10.2165/00003088-200443130-00005Suche in Google Scholar

4. Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP Database. Clin Ther 2012;34:149–57.10.1016/j.clinthera.2011.12.013Suche in Google Scholar

5. Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 2011;37:95–101.10.1016/j.ijantimicag.2010.10.013Suche in Google Scholar

6. Wilson JF, Davis AC, Tobin CM. Evaluation of commercial assays for vancomycin and aminoglycosides in serum: a comparison of accuracy and precision based on external quality assessment. J Antimicrob Chemother 2003;52:78–82.10.1093/jac/dkg296Suche in Google Scholar

7. Cass RT, Villa JS, Karr DE, Schmidt DE Jr. Rapid bioanalysis of vancomycin in serum and urine by high-performance liquid chromatography tandem mass spectrometry using on-line sample extraction and parallel analytical columns. Rapid Commun Mass Spectrom 2001;15:406–12.10.1002/rcm.246Suche in Google Scholar

8. Zhang T, Watson DG, Azike C, Tettey JN, Stearns AT, Binning AR, et al. Determination of vancomycin in serum by liquid chromatography-high resolution full scan mass spectrometry. J Chromatogr B 2007;857:352–6.10.1016/j.jchromb.2007.07.041Suche in Google Scholar

9. Shibata N, Ishida M, Prasad YV, Gao W, Yoshikawa Y, Takada K. Highly sensitive quantification of vancomycin in plasma samples using liquid chromatography-tandem mass spectrometry and oral bioavailability in rats. J Chromatogr B 2003;789:211–8.10.1016/S1570-0232(03)00068-0Suche in Google Scholar

10. Stepman HC, Vanderroost A, Van Uytfanghe K, Thienpont LM. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 2011;57:441–8.10.1373/clinchem.2010.152553Suche in Google Scholar PubMed

11. Annesley TM. Ion suppression in mass spectrometry. Clin Chem 2003;49:1041–4.10.1373/49.7.1041Suche in Google Scholar PubMed

12. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 2003;75:3019–30.10.1021/ac020361sSuche in Google Scholar PubMed

13. Guidance for Industry-Bioanalytical Method Validation. U.S. Department of Health and Human Services-Food and Drug Administration; 2001. Available from: http://www.fda.gov/downloads/Drugs/…/Guidances/ucm070107.pdf. Accessed on February, 2012.Suche in Google Scholar

Received: 2013-2-22
Accepted: 2013-3-21
Published Online: 2013-04-11
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Editorials
  4. What is a biomarker? It’s time for a renewed definition
  5. Biomarker research and leading causes of death worldwide: a rather feeble relationship
  6. Thiosulfate in urine: new hope or new failure of a biomarker for prostate cancer?
  7. Review
  8. Acute coronary syndrome – the present and future role of biomarkers1)
  9. Mini Review
  10. Advance in molecular diagnostic tools for hepatitis B virus detection
  11. Opinion Paper
  12. Standardization and analytical goals for glycated hemoglobin measurement
  13. Guidelines and Recommendations
  14. Proposal for the use in emergency departments of cardiac troponins measured with the latest generation methods in patients with suspected acute coronary syndrome without persistent ST-segment elevation
  15. General Clinical Chemistry and Laboratory Medicine
  16. Current status of verification practices in clinical biochemistry in Spain
  17. Two site evaluation of the performance of a new generation point-of-care glucose meter for use in a neonatal intensive care unit
  18. Trp64Arg (rs4994) polymorphism of β3-adrenergic receptor gene is associated with hyperuricemia in a Chinese male population
  19. Quantification of vancomycin in human serum by LC-MS/MS
  20. Automated indirect immunofluorescence antinuclear antibody analysis is a standardized alternative for visual microscope interpretation
  21. Autocorrelation and cross-correlation between hCGβ and PAPP-A in repeated sampling during first trimester of pregnancy
  22. Platelet oxidative stress and systemic inflammation in chronic spontaneous urticaria
  23. Reference Values
  24. Establishment of reference values for novel urinary biomarkers for renal damage in the healthy population: are age and gender an issue?
  25. Risks of mortality associated with common laboratory tests: a novel, simple and meaningful way to set decision limits from data available in the Electronic Medical Record
  26. Cancer Diagnostics
  27. Cancer antigen 125, human epididymis 4, kallikrein 6, osteopontin and soluble mesothelin-related peptide immunocomplexed with immunoglobulin M in epithelial ovarian cancer diagnosis
  28. Thiosulfate in urine as a facilitator in the diagnosis of prostate cancer for patients with prostate-specific antigen less or equal 10 ng/mL
  29. Anemia and iron biomarkers in patients with early breast cancer. Diagnostic value of hepcidin and soluble transferrin receptor quantification1)
  30. Sensitive detection of EML4-ALK fusion oncoprotein of lung cancer by in situ proximity ligation assay
  31. Re-evaluation of laboratory predictors of response to current anemia treatment regimens of erythropoiesis stimulating agents in cancer patients
  32. Cardiovascular Diseases
  33. Evaluation of four sensitive troponin assays for risk assessment in acute coronary syndromes using a new clinically oriented approach for comparison of assays
  34. A combined index of cardiac biomarkers as a risk factor for early cardiovascular mortality in hemodialysis patients
  35. Prognostic utility of biochemical markers of cardiovascular risk: impact of biological variability
  36. Letters to the Editors
  37. Exploring the relationship between serum biomarkers, acute intracerebral changes and outcome after severe traumatic brain injury (TBI)
  38. Laboratory false-positive results: a clinician responsibility or a shared responsibility with requesting clinicians?
  39. The one hour lactose tolerance test
  40. High concentration of IgM-κ paraprotein causes over-estimation of serum total protein by certain biuret method
  41. Determining calculated free testosterone reference intervals in a normal adult male population
  42. Alveolar neopterin, procalcitonin, and IL-6 in relation to serum levels and severity of lung injury in ARDS
  43. Falsely elevated cobalamin concentration in multiple assays in a patient with pernicious anemia: a case study
  44. Leading Figures in Laboratory Medicine
  45. Research forever – Klaus Jung
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2013-0142/html
Button zum nach oben scrollen