Startseite A method for reconstruction of visually evoked potentials from limited amount of sweeps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A method for reconstruction of visually evoked potentials from limited amount of sweeps

  • Asta Kybartaite-Ziliene EMAIL logo , Arvydas Gelzinis und Algimantas Krisciukaitis
Veröffentlicht/Copyright: 10. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Visually evoked potentials (VEPs) are signals evoked by a visual stimulus. They consist of brief discrete deflections embedded in background electroencephalographic (EEG) activity, which often has larger amplitude. Background EEG cancelation is a major part of VEPs analysis algorithms often realized by coherent averaging or other methods requiring large minimal amount of registered sweeps. In some cases, especially for pediatric patients, or in poor patient compliance cases, long procedure duration and fatigue might cause impaired attention and non-steady target fixation, affecting the quality of recorded VEPs. The possibility to reconstruct VEPs in every single sweep from limited size ensembles opens new diagnostic possibilities and shortens the registration procedure improving its quality. A proposed method is based on truncated expansion (Karhunen-Loève transform) of VEP signals applying generalized universal basis functions (eigenvectors of covariation matrix) calculated from learning set of sweeps, i.e. an ensemble of collected typical recordings. It realizes the possibility to reconstruct a signal from every single sweep even in limited size ensembles of registered sweeps. Application of adaptively time-shifted basis functions enables optimal reconstruction of the signal with latency shift or jitter.


Corresponding author: Asta Kybartaite-Ziliene, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50009 Kaunas, Lithuania, Phone : +370 37 326924, Fax: +370 37 302959, E-mail:

Acknowledgments

The first author, Asta Kybartaite-Ziliene, acknowledges that this work is part of her postdoctoral fellowship that was funded by European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania” within the framework of the Measure for Enhancing Mobility of Scholars and Other Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the Program of Human Resources Development Action Plan.

References

[1] D’Avanzo C, Schiff S, Amodio P, Sparacino G. A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 variability. J Neurosci Meth 2011; 198: 114–124.10.1016/j.jneumeth.2011.03.010Suche in Google Scholar PubMed

[2] Di Russo F, Stella A, Spitoni G, et al. Spatio-temporal brain mapping of spatial attention effects on pattern-reversal ERPs. Hum Brain Mapp 2012; 33: 1334–1351.10.1002/hbm.21285Suche in Google Scholar PubMed PubMed Central

[3] Fjell AM, Rosquist H, Walhovd KB. Instability in the latency of P3a/P3b brain potentials and cognitive function in aging. Neurobiol Aging 2009; 30: 2065–2079.10.1016/j.neurobiolaging.2008.01.015Suche in Google Scholar PubMed

[4] Garoosi V, Jansen BH. Development and evaluation of the piecewice Prony method for evoked potential analysis. IEEE Trans Biomed Eng 2000; 47: 1549–1554.10.1109/10.887935Suche in Google Scholar PubMed

[5] Highsmith J, Crognale MA. Attentional shifts have little effect on the waveform of the chromatic onset VEP. Ophthalmic Physl Opt 2010; 30: 525–533.10.1111/j.1475-1313.2010.00747.xSuche in Google Scholar PubMed

[6] Hoffmann MB, Seufert PS, Bach M. Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 2004; 115: 2659–2665.10.1016/j.clinph.2004.06.003Suche in Google Scholar PubMed

[7] ISCEV Committee for Pediatric Clinical Electrophysiology Guidelines, Fulton AB, Brecelj J, Lorenz B, Moskowitz A, Thompson D, Westall CA. Pediatric clinical visual electrophysiology a survey of actual practice. Doc Ophthalmol 2006; 113: 193–204.10.1007/s10633-006-9029-6Suche in Google Scholar PubMed

[8] Karjalainen PA. Regularization and Bayesian Methods for Evoked Potential Estimation, Natural and Environmental Sciences. Kuopio University Publications, Kuopio, Finland, 1997. Available: http://bsamig.uef.fi/pdf/phd_pak.pdf.Suche in Google Scholar

[9] Kremlacek J, Hulan M, Kuba M, et al. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation. Doc Ophthalmol 2012; 124: 211–223.10.1007/s10633-012-9321-6Suche in Google Scholar PubMed

[10] Krisciukaitis A, Tamosiunas M, Jakuska P, et al. Evaluation of ischemic injury of the cardiac tissue by using the principal component analysis of an epicardial electrogram. Comput Meth Prog Bio 2006; 82: 121–129.10.1016/j.cmpb.2006.03.002Suche in Google Scholar PubMed

[11] Kus R, Rozanski PT, Durka PJ. Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog. Biomed Eng Online 2013; 12: 94.10.1186/1475-925X-12-94Suche in Google Scholar PubMed PubMed Central

[12] Liparas D, Laskaris N, Angelis L. Incorporating resting state dynamics in the analysis of encephalographic responses by means of the Mahalanobis-Taguchi strategy. Expert Syst Appl 2013; 40: 2621–2630.10.1016/j.eswa.2012.11.014Suche in Google Scholar

[13] Magni R, Giunti S, Bianchi A, et al. Singe-sweep analysis using an autoregressive with exogenous input (ARX) model. Doc Ophthalmol 1994; 86: 95–104.10.1007/BF01224631Suche in Google Scholar

[14] McCulloch DL, Orbach H, Skarf B. Maturation of the pattern-reversal VEP in human infants: a theoretical framework. Vision Res 1999; 39: 3673–3680.10.1016/S0042-6989(99)00091-7Suche in Google Scholar

[15] Menz M, Sutter E, Menz M. The effect of fixation instability on the multifocal VEP. Doc Ophthalmol 2004; 109: 147–156.10.1007/s10633-004-3790-1Suche in Google Scholar

[16] Moody GB. The PhysioNet/Computing in Cardiology Challenge 2010: mind the gap. Comput Cardiol 2010; 37: 305–308.Suche in Google Scholar

[17] Moskowitz A, Sokol S. Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP. Electroencephalogr Clin Neurophysiol 1983; 56: 1–15.10.1016/0013-4694(83)90002-0Suche in Google Scholar

[18] Mouraux A, Iannetti G. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 2008; 26: 1041–1054.10.1016/j.mri.2008.01.011Suche in Google Scholar

[19] Normann C, Schmitz D, Fürmaier A, Döing C, Bach M. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 2007; 62: 373–380.10.1016/j.biopsych.2006.10.006Suche in Google Scholar

[20] Odom AJV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 2010; 120: 111–119.10.1007/s10633-009-9195-4Suche in Google Scholar

[21] Quian Quiroga R, Atienza M, Cantero JL, Jongsma MLA. What can we learn from single-trial event-related potentials? Chaos and Complexity Letters 2007; 2: 345–363.Suche in Google Scholar

[22] Rugg MD, Coles MGH. Electrophysiology of mind: event-related brain potentials and cognition. Oxford: Oxford University Press; 1995.10.1093/acprof:oso/9780198524168.003.0001Suche in Google Scholar

[23] Sörnmo L, Laguna P. Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Academic 2005. ISBN 13: 978-0-12- 437552-9.Suche in Google Scholar

[24] Sparacino G, Milani S, Arslan E, Cobelli C. A Bayesian approach to estimate evoked potentials. Comput Meth Prog Bio 2002; 68: 233–248.10.1016/S0169-2607(01)00175-4Suche in Google Scholar

[25] Thornton ARD. Evaluation of a technique to measure latency jitter in event-related potentials. J Neurosci Meth 2008; 168: 248–255.10.1016/j.jneumeth.2007.09.031Suche in Google Scholar PubMed

[26] Truccolo W, Knuth KH, Shah A, Bressler SL, Schoeder CE, Ding M. Estimation of single-trial multicomponent ERPs: differentially variable component analysis (dVCA). Biol Cybern 2003; 89: 426–438.10.1007/s00422-003-0433-7Suche in Google Scholar PubMed

[27] Wold S. Cross-validatory estimation of the number of components in factor and principal component models. Technometrics 1978; 20: 397–405.10.1080/00401706.1978.10489693Suche in Google Scholar

[28] Woody CD. Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med and Biol Engng 1967; 5: 539–553.10.1007/BF02474247Suche in Google Scholar

[29] Xu L, Stoica P, Li J, Bressler SL, Shao X, Ding M. ASEO: a method for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities. IEEE Trans Biomed Eng 2009; 56: 111–121.10.1109/TBME.2008.2008166Suche in Google Scholar PubMed

[30] Zhang B, Stevenson SS, Cheng H, et al. Effects of fixation instability on multifocal VEP responses in amblyopes. J Vis 2008; 8: 16.1–14.10.1167/8.3.16Suche in Google Scholar PubMed

Received: 2015-5-11
Accepted: 2015-11-9
Published Online: 2015-12-10
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bmt-2015-0088/html
Button zum nach oben scrollen