Abstract
Alpha-ketoglutarate (AKG), a key intermediate in the Krebs cycle and metabolism of amino acids, is one of dietary supplements studied actively during last decade. In this work, we examined the ability of dietary AKG to prevent age-related functional decline in D. melanogaster. For that, some metabolic processes and physiological functions, such as climbing activity and cold resistance, were studied in young (2 days post-eclosion) and middle-aged (24 days) D. melanogaster w1118 adults maintained on AKG-supplemented diet. Both locomotor activity and cold resistance measured as chill coma recovery time (CCRT) impaired in middle-aged flies compared with young ones. Diet with 10 mM AKG improved climbing activity in middle-aged flies of both sexes. A positive impact of AKG on CCRT was found in young flies of both sexes and in middle-aged females. AKG-containing diet did not affect cold hardening in young flies, whereas middle-aged flies fed on AKG were more resistant to repeated cold treatments than control ones. Two-day old flies reared on AKG had higher free amino acid level, including that of proline. At 24-day age, AKG-fed females but not males had higher levels of free amino acids and glucose, and higher total antioxidant capacity than control ones. We conclude that both the enhancement of antioxidant capacity and synthesis of amino acids can contribute to AKG-promoted reduction in CCRT. However, since dietary AKG enhanced locomotor activity and resistance to repeated cold stresses in middle-aged both males and females, mechanisms of beneficial effects of AKG seem to be more complicated, that is discussed.
Acknowledgements
We are grateful to Bloomington Stock Center (Indiana University, USA) for providing D. melanogaster strain, Ms. U. Dzaman for English editing of the manuscript, O. Semchyshyn, O. Manyuch, and H. Shmihel for technical assistance.
Conflict of interest: The authors have declared that there is no conflict of interest.
Abbreviations
- ABTS
2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
- AKG
alpha-ketoglutarate
- CCRT
chill coma recovery time
- ROS
reactive oxygen species
References
Andersen L.H., Kristensen T.N., Loeschcke V., Toft S. & Mayntz D. 2010. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect. Physiol. 56: 336–340. DOI: 10.1016/j.jinsphys.2009.11.006DOI: 10.1016/j.jinsphys.2009.11.006Search in Google Scholar
Andersen J.L., Manenti T., Sørensen J.G., Loeschcke V. & Overgaard J. 2015. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29: 55–65. DOI: 10.1111/1365-2435.1231010.1111/1365-2435.12310Search in Google Scholar
Bayliak M.M., Lylyk M.P., Shmihel H.V., Sorochynska O.M., Manyukh O.V., Pierzynowski S.G. & Lushchak V.I. 2016. Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner. J. Therm. Biol. 60: 1–11. DOI: 10.1016/j.jtherbio.2016.06.001DOI: 10.1016/j.jtherbio.2016.06.001Search in Google Scholar
Bayliak M.M., Shmihel H.V., Lylyk M.P., Vytvytska O.M., Storey J.M., Storey K.B. & Lushchak V.I. 2015. Alpha-ketoglutarate attenuates toxic effects of sodium nitroprusside and hydrogen peroxide in Drosophila melanogaster. Environ. Toxicol. Pharmacol. 40: 650-659. DOI: 10.1016/j.etap.2015. 08.016DOI: 10.1016/j.etap.2015.08.016Search in Google Scholar
Bergman I. & Loxley R. 1970. New spectrophotometric method for the determination of proline in tissue hydrolyzates. Anal. Chem. 42: 702-706. DOI: 10.1021/ac60289a036DOI: 10.1021/ac60289a036Search in Google Scholar
Bode A.M., Foster J.D. & Nordlie R.C. 1992. Glyconeogenesis from L-proline involves metabolite inhibition of the glucose-6-phosphatase system. J. Biol. Chem. 267: 2860-2863.10.1016/S0021-9258(19)50662-7Search in Google Scholar
Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254. DOI: 10.1016/0003-2697(76)90527-3DOI: 10.1016/0003-2697(76)90527-3Search in Google Scholar
Chin R.M., Fu X., Pai M.Y., Vergnes L., Hwang H. Deng C, Diep S., Lomenick B., Meli VS., Monsalve G.C., Hu E., Whelan S.A., Wang J.X., Jung G, Solis G.M., Fazlollahi F., Kaweeteerawat Ch., Quach A., Nili M., Krall A.S., Godwin H.A., Chang H.R., Faull K.F., Guo F., Jiang M., Trauger S.A., Saghatelian A., Braas D., Christofk H.R., Clarke C.F., Teitell M.A., Petrascheck M., Reue K., Jung M.E., Frand A.R. & Huang J. 2014. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510: 397-401. DOI: 10.1038/naturel3264DOI: 10.1038/naturel3264Search in Google Scholar
Colinet H., Lee S.F. & Hoffmann A. 2010a. Functional characterization of the Frost gene in Drosophila melanogaster: importance for recovery from chill coma. PLoS One 5: el0925. DOI: 10.1371/journal.pone.0010925DOI: 10.1371/journal.pone.0010925Search in Google Scholar
Colinet H., Lee S.F. & Hoffmann A. 2010b. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 213 (Pt 24): 4146-4150. DOI: 10.1242/jeb.051003DOI: 10.1242/jeb.051003Search in Google Scholar
Cook-Wiens E. & Grotewiel M.S. 2002. Dissociation between functional senescence and oxidative stress resistance in Drosophila. Exp. Gerontol. 37: 1347-1357. DOI: 10.1016/ S0531-5565(02)00096-7DOI: 10.1016/ S0531-5565(02)00096-7Search in Google Scholar
David R.J., Gibert P., Pla E., Petavy G. & Karan D. & Moreteau B. 1998. Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J. Therm. Biol. 23: 291— 299. DOI: 10.1016/S0306-4565(98)00020-5DOI: 10.1016/S0306-4565(98)00020-5Search in Google Scholar
Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37: 277-285. DOI: 10.1016/j.clinbiochem.2003.11.015DOI: 10.1016/j.clinbiochem.2003.11.015Search in Google Scholar
Gargano J.W., Martin I., Bhandari P. & Grotewiel M.S. 2005. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp. Gerontol. 40: 386-395. DOI: 10.1016/j.exger.2005.02.005DOI: 10.1016/j.exger.2005.02.005Search in Google Scholar
Gibert P. & Huey R.B. 2001. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74: 429-234. DOI: 10.1086/320429DOI: 10.1086/320429Search in Google Scholar
Gospodaryov D.V, Lushchak O.V, Rovenko B.M., Perchulyn N.V., Gerards M., Tuomela T. & Jacobs H.T. 2014. Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila. Biochim. Bio-phys. Acta 1837: 1861-1869. DOI: 10.1016/j.bbabio.2014.08. 001DOI: 10.1016/j.bbabio.2014.08.001Search in Google Scholar
Gospodaryov D.V, Yurkevych I.S., Lushchak O.V. & Lushchak VI. 2013. Correction: Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance. Longevity & Healthspan 2: 12. DOI: 10.1186/2046-2395-2-12.DOI: 10.1186/2046-2395-2-12Search in Google Scholar
Grotewiel M.S., Martin I., Bhandari P. & Cook-Wiens E. 2005. Functional senescence in Drosophila melanogaster. Aging Res. Rev. 4: 372-397. DOI: 10.1016/j.arr.2005.04.001DOI: 10.1016/j.arr.2005.04.001Search in Google Scholar
Harrison A.P. & Pierzynowski S.G. 2008. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancero-genesis, all viewed from a healthy ageing perspective state of the art-review article. J. Physiol. Pharmacol. 59 (Suppl. 1): 91-106. PMID: 18802218PMID: 18802218Search in Google Scholar
Ismail M.Z., Hodges M.D., Boylan M., Achall R., Shirras A., Broughton S.J. 2015. The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 10: e0125312. DOI: 10.1371/journal.pone.0125312DOI: 10.1371/journal.pone.0125312Search in Google Scholar
Jones M.A. & Grotewiel M. 2011. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 46: 320-325. DOI: 10.1016/j.exger.2010.08.012DOI: 10.1016/j.exger.2010.08.012Search in Google Scholar
Kelty J.D. & Lee R.E. 2001. Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. J. Exp. Biol. 204: 1659–1666. PMID: 11398755PMID: 11398755Search in Google Scholar
Kostal V, Korbelova J., Rozsypal J., Zahradníčková H., Cimlová J., Tomčala A. & Šimek P. 2011. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE 6: e25025. DOI: 10.1371/journal.pone.0025025DOI: 10.1371/journal.pone.0025025Search in Google Scholar
Lalouette L., Kostál V, Colinet H., Gagneul D. & Renault D. 2007. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J. 274: 1759-1767. DOI: l0.1111/j.1742-4658.2007.05723.xDOI: l0.1111/j.1742-4658.2007.05723.xSearch in Google Scholar
Lalouette L.A., Williams C.M., Hervant F., Sinclair S.J. & Renault D. 2011. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158: 229-234. DOI: 10.1016/j.cbpa.2010.11.007DOI: 10.1016/j.cbpa.2010.11.007Search in Google Scholar
Lambert B.D., Filip R., Stoll B., Junghans P., Derno M., Hennig U., Souffrant W.B., Pierzynowski S. & Burrin D.G. 2006. First-pass metabolism limits the intestinal absorption of enteral alpha-ketoglutarate in young pigs. J. Nutr. 136: 2779— 2784. PMID: 17056800PMID: 17056800Search in Google Scholar
Lee Y.P. & Takahashi T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem. 14: 71-77. DOI: 10.1016/0003-2697(66)90057-1DOI: 10.1016/0003-2697(66)90057-1Search in Google Scholar
Leffelaar D. & Grigliatti T. 1984. Age-dependent behavior loss in adult Drosophila melanogaster. Dev. Genet. 4: 211–227. DOI: 10.1002/dvg. 1020040307DOI: 10.1002/dvg.1020040307Search in Google Scholar
Long J., Gao H., Sun L., Liu J. & Zhao-Wilson X. 2009. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res. 12: 321-331. DOI: 10.1089/rej.2009.0877DOI: 10.1089/rej.2009.0877Search in Google Scholar
Lushchak V.I. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224: 164-175. DOI: 10.1016/j.cbi.2014.10.016DOI: 10.1016/j.cbi.2014.10.016Search in Google Scholar
Lushchak O.V., Gospodaryov D.V., Rovenko B.M., Glovyak A.D., Yurkevych I.S., Klyuba V.P. Shcherbij M.V. & Lushchak V.I. 2012. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 67: 118-125. DOI: 10.1093/gerona/glrl84DOI: 10.1093/gerona/glrl84Search in Google Scholar
Lushchak O.V, Gospodaryov D.V, Rovenko B.M., Yurkevych I.S., Perkhulyn N.V. & Lushchak VI. 2014. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci. 69: 3-12. DOI: 10.1093/gerona/glt077DOI: 10.1093/gerona/glt077Search in Google Scholar
Lushchak O.V, Rovenko B.M., Gospodaryov D.V. & Lushchak VI. 2011. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160: 27-34. DOI: 10.1016/j.cbpa.2011.04.019DOI: 10.1016/j.cbpa.2011.04.019Search in Google Scholar
MacMillan H.A., Guglielmo C.G. & Sinclair B.J. 2009. Membrane remodeling and glucose in Drosophila melanogaster. a test of rapid cold-hardening and chilling tolerance hypotheses. J. Insect Physiol. 55: 243-249. DOI: 10.1016/j.jinsphys.2008.11. 015.DOI: 10.1016/j.jinsphys.2008.11.015Search in Google Scholar
MacMillan H.A., Williams C.M., Staples J.F. & Sinclair B.J. 2012. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc. Natl. Acad. Sci. U.S.A. 109: 20750-20755. DOI: 10.1073/pnas. 1212788109DOI: 10.1073/pnas. 1212788109Search in Google Scholar
Michaud M.R. & Denlinger D.L. 2004. Molecular modalities of insect cold survival: current understanding and future trends. Int. Congr. Ser. 1275: 32-46. DOI: 10.1016/j.ics.2004.08.059DOI: 10.1016/j.ics.2004.08.059Search in Google Scholar
Misener S.R., Chen C. & Walker V.K. 2001. Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. J. Insect Physiol. 47: 393-400. DOI: 10.1016/ S0022-1910(00)00141-4DOI: 10.1016/ S0022-1910(00)00141-4Search in Google Scholar
Morrow G. & Tanguay R.M. 2003. Heat shock proteins and aging in Drosophila melanogaster. Semin. Cell Dev. Biol. 14: 291— 299. DOI: 10.1016/j.semcdb.2003.09.023DOI: 10.1016/j.semcdb.2003.09.023Search in Google Scholar
Niemiec T., Sikorska J., Harrison A., Szmidt M., Sawosz E., Wirth-Dzieciolowska E., Wilczak J. & Pierzynowski S. 2011. Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice. J. Physiol. Pharmacol. 62: 37-43. PMID: 21451208PMID: 21451208Search in Google Scholar
Nilson T.L., Sinclair B.J. & Roberts S.P. 2006. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect. Physiol. 52: 1027-1033. DOI: 10.1016/j.jinsphys.2006.07.001DOI: 10.1016/j.jinsphys.2006.07.001Search in Google Scholar
Pandey A., Vimal D., Chandra S., Saini S., Narayan G. & Kar Chowdhuri D. 2014. Long-term dietary exposure to low concentration of dichloroacetic acid promoted longevity and attenuated cellular and functional declines in aged Drosophila melanogaster. Age 36: 9628. DOI: 10.1007/sll357-014-9628-1DOI: 10.1007/sll357-014-9628-1Search in Google Scholar
Panikar C.S., Rajpathak S.N., Abhyankar V, Deshmukh S. & De-obagkar D.D. 2015. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol. Biol. Rep. 42: 1615-1621. DOI: 10.1007/sll033-015-3931-5DOI: 10.1007/sll033-015-3931-5Search in Google Scholar
Radzki R.P., Bienko M. & Pierzynowski S.G. 2012. Anti-osteopenic effect of alpha-ketoglutarate sodium salt in oviarectomized rats. J. Bone Miner. Metab. 30: 651-659. DOI: 10.1007/s00774-012-0377-x.DOI: 10.1007/s00774-012-0377-xSearch in Google Scholar
Rovenko B.M., Kubrak O.I., Gospodaryov D.V, Perkhulyn N.V, Yurkevych I.S., Sanz A., Lushchak O.V. & Lushchak V.I. 2015. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect. Physiol. 79: 42–54. DOI: 10.1016/j.jinsphys.2015.05.007DOI: 10.1016/j.jinsphys.2015.05.007Search in Google Scholar
Salminen A., Kauppinen A. & Kaarniranta K. 2015. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell. Mol. Life Sci. 72: 3897-914. DOI: 10.1007/s00018-015-1978-zDOI: 10.1007/s00018-015-1978-zSearch in Google Scholar
Sies H. 2015. Oxidative stress: a concept in redox biology and medicine. Redox Biology 4: 180-183. DOI: 10.1016/j.redox. 2015.01.002DOI: 10.1016/j.redox.2015.01.002Search in Google Scholar
Storey K.B. & Storey J.M. 2013. Molecular biology of freezing tolerance. Comp. Physiol. 3: 1283-1308. DOI: 10.1002/cphy c130007DOI: 10.1002/cphy c130007Search in Google Scholar
Vasylkovska R., Petriv N. & Semchyshyn H. 2015. Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int. J. Microbiol. 2015: 697813. DOI: 10.1155/2015/697813DOI: 10.1155/2015/697813Search in Google Scholar
Wang L., Xu Q., Wang C, Li J., Chen D., Zhao Z., Luo L. & Du X. 2016. Effects of dietary ct-ketoglutarate supplementation on the antioxidant defense system and HSP 70 and HSP 90 gene expression of hybrid sturgeon Acipenser schrenckii ♀ x A. baerii ♂ exposed to ammonia-N stress. Aquacult. Res. DOI: 10.1111/are.l3063DOI: 10.1111/are.l3063Search in Google Scholar
Whillier S., Garcia B., Chapman B.E., Kuchel P.W. & Raftos J.E. 2011. Glutamine and ct-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. FEBS J. 278: 3152-3163. DOI: 10.1111/j.1742-4658.2011.08241.xDOI: 10.1111/j.1742-4658.2011.08241.xSearch in Google Scholar
© 2017 Institute of Zoology, Slovak Academy of Sciences
Articles in the same Issue
- Celluar and Molecular Biology
- Occurrence of Anaplasma phagocytophilum in three sympatric tick species in the South Moravia, Czech Republic
- Botany
- Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration
- Botany
- Role of ethylene and phospholipid-mediated signalling in mycotoxin-induced programmed cell death in the apical part of maize roots
- Botany
- Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress
- Botany
- Type II metacaspase protein localization and gene transcription during programmed cell semi-death of sieve elements in developing caryopsis of Tritium aestivum
- Zoology
- Environmental factors determining the distribution pattern of leeches (Clitellata: Hirudinida) in large river systems: A case study of the Oder River system
- Zoology
- Effects of beaver dams on the zooplankton assemblages in four temperate lowland streams (NW Poland)
- Zoology
- Bioassessment of streams based on macroinvertebrates — can sampling of some substrate types be excluded?
- Zoology
- Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains
- Zoology
- Food digestibility and consumption rate in detrito-bryophagous groundhopper Tetrix subulata (Orthoptera: Tetrigidae)
- Zoology
- Dietary alpha-ketoglutarate partially prevents age-related decline in locomotor activity and cold tolerance in Drosophila melanogaster
- Zoology
- The evaluation of endocrine regulators after intramuscular and oral application of cyanogenic glycoside amygdalin in rabbits
Articles in the same Issue
- Celluar and Molecular Biology
- Occurrence of Anaplasma phagocytophilum in three sympatric tick species in the South Moravia, Czech Republic
- Botany
- Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration
- Botany
- Role of ethylene and phospholipid-mediated signalling in mycotoxin-induced programmed cell death in the apical part of maize roots
- Botany
- Transcriptome analysis in leaves of rice (Oryza sativa) under high manganese stress
- Botany
- Type II metacaspase protein localization and gene transcription during programmed cell semi-death of sieve elements in developing caryopsis of Tritium aestivum
- Zoology
- Environmental factors determining the distribution pattern of leeches (Clitellata: Hirudinida) in large river systems: A case study of the Oder River system
- Zoology
- Effects of beaver dams on the zooplankton assemblages in four temperate lowland streams (NW Poland)
- Zoology
- Bioassessment of streams based on macroinvertebrates — can sampling of some substrate types be excluded?
- Zoology
- Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains
- Zoology
- Food digestibility and consumption rate in detrito-bryophagous groundhopper Tetrix subulata (Orthoptera: Tetrigidae)
- Zoology
- Dietary alpha-ketoglutarate partially prevents age-related decline in locomotor activity and cold tolerance in Drosophila melanogaster
- Zoology
- The evaluation of endocrine regulators after intramuscular and oral application of cyanogenic glycoside amygdalin in rabbits