Startseite Product Differentiation and Trade
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Product Differentiation and Trade

  • Jiancai Pi EMAIL logo und Yanwei Fan
Veröffentlicht/Copyright: 15. Dezember 2023

Abstract

This paper analyzes the impacts of product differentiation in general oligopolistic equilibrium with trade. With constant wages, when product differentiation increases, the extensive margins of home and foreign exports decrease, and the domestic and foreign scopes of variety in each industry increase unambiguously. However, the impact of product differentiation on the labor requirement of each firm is mixed. In general equilibrium, an increment of product differentiation increases the wage rate unambiguously if the total variety of goods is large enough in all industry. However, if all firms are single-product ones, an increment of product differentiation increases the wage rate unambiguously in general equilibrium.

JEL Classification: F10; F12; L13

Corresponding author: Jiancai Pi, Department of Economics, Nanjing University, Nanjing, P.R. China, E-mail:

Acknowledgment

We are very grateful to the editor Ronald Peeters and an anonymous reviewer for their helpful comments and suggestions on improving this paper.

Appendix A: The Optimal Problem of Consumers

From Eq. (2), the first-order conditions for the representative consumer at home is given by:

(A1) λ p i = a b 1 e y i + e 0 N y i d i .

Integrating Eq. (A1) with respect to i for each given z and rearranging the equation, we obtain:

(A2) 0 N y i d i = 1 b 1 + N e e N a λ 0 N p i d i .

Combining Eqs. (A1) and (A2), we have:

(A3) λ p i = 1 e a 1 + N e e b 1 e y i + e λ 1 + N e e 0 N p i d i .

Then, integrating Eq. (A3) with respect to i and z and rearranging the equation, we have:

(A4) λ = a 0 1 1 1 + N e e 0 N p i d i d z b 0 1 0 N p i y i d i d z 1 1 e 0 1 0 N p i 2 d i d z 0 1 e 1 + N e e 0 N p i d i 2 d z ,

where 0 1 0 N p i y i d i d z is exactly equal to income I.

Thus, the marginal utility of income in the home country can be rewritten as:

(A5) λ = μ 1 P b I μ 2 P ,

where μ 1 P and μ 2 P are given by:

(A6) μ 1 P = 0 1 1 1 + N e e 0 N p i d i d z ,

(A7) μ 2 P = 1 1 e 0 1 0 N p i 2 d i d z 0 1 e 1 + N e e 0 N p i d i 2 d z .

Appendix B: Equilibrium Conditions of Production

In symmetric equilibrium, the first-order conditions for domestic firms (i.e. Eqs. (10) and (12)) can be rewritten as:

(B1) a ̄ c j i 2 b ̄ 1 e x j i b ̄ e X b ̄ e Y = 0 ,

(B2) a ̄ c j δ j b ̄ e n + 1 X + n * X * = 0 .

Integrating Eq. (B1) with respect to i in 0 , δ j , we obtain:

(B3) δ j a ̄ 0 δ j c j i d i b ̄ 2 1 e + δ j e X δ j b ̄ e Y = 0 .

With δ j = δ and 0 δ j c j i d i = c z δ j + 1 2 γ δ j 2 , Eq. (B3) can be rewritten as:

(B4) δ a ̄ 2 b ̄ 1 e X c z δ + 1 2 w δ 2 b ̄ e δ n + 1 X + n * X * = 0 .

Then, with c j δ j = c z w δ j and Eq. (B3), we have:

(B5) b ̄ e n + 1 X + n * X * = a ̄ c z w δ .

Combining Eqs. (B4) and (B5), we obtain:

(B6) 2 b ̄ 1 e X + 1 2 w δ 2 = 0 .

Similarly, for the foreign country, we have:

(B7) b ̄ e n X + n * + 1 X * = a ̄ c * z w * δ * ,

(B8) 2 b ̄ 1 e X * + 1 2 w * δ * 2 = 0 .

Furthermore, combining Eqs. (B5)(B8) and eliminating X and X*, we obtain:

(B9) a ̄ c w + δ + e n + 1 4 1 e δ 2 + e n * w * 4 1 e w δ * 2 = 0 ,

(B10) a ̄ c * w * + e n w 4 1 e w * δ 2 + δ * + e n * + 1 4 1 e δ * 2 = 0 .

Appendix C: Impacts of Product Differentiation on Extensive Margins

In industry z ̃ ,with X = 0 and δ = 0, Eqs. (B9) and (B10) can be rewritten as:

(C1) a c z ̃ w + e n * w * 4 1 e w δ * 2 = 0 ,

(C2) a c * z ̃ w * + δ * + e n * + 1 4 1 e δ * 2 = 0 .

Differentiating Eqs. (C1) and (C2) with respect to δ*, z ̃ , and e and solving the equations, we obtain:

(C3) z ̃ e = n * w * δ * 2 2 1 e 2 c z ̃ 1 e + c z ̃ e n * + 1 c * z ̃ e n * δ * < 0 ,

(C4) δ * z ̃ e = c z ̃ 1 + n * c * z ̃ n * δ * 2 2 1 e 2 c z ̃ 1 e + c z ̃ e n * + 1 c * z ̃ e n * δ * < 0 .

Symmetrically, in industry z ̃ * , we have:

(C5) z ̃ e = n w δ 2 2 1 e 2 c z ̃ 1 e + c z ̃ e n * + 1 c * z ̃ e n * δ * < 0 .

Appendix D: Impacts of Product Differentiation on the Scopes of Variety

For z z ̃ * , z ̃ , differentiating Eqs. (B9) and (B10) with respect to δ, δ*, and e, and solving the equations, we obtain:

(D1) δ e = 2 1 e 1 + n w δ 2 + n * w * δ * 2 + e 1 + n + n * w δ * δ 2 2 1 e w Δ < 0 ,

(D2) δ * e = 2 1 e n w δ 2 + 1 + n * w * δ * 2 + e 1 + n * + n w * δ δ * 2 2 1 e w * Δ < 0 ,

where Δ = 4 1 e 2 + 2 1 e e 1 + n δ + 1 + n * δ * + e 2 1 + n + n * δ δ * .

For z 0 , z ̃ * z ̃ , 1 , although the first-order conditions are not differentiable at z ̃ and z ̃ * , Eqs. (B9) and (B10) are continuous at z ̃ and z ̃ * . Thus, δ e and δ * e have the same sign as Eqs. (D1) and (D2). Thus, we know that δ e < 0 and δ * e < 0 in all industries.

Appendix E: Impacts of Product Differentiation on the Wage in the General Equilibrium

Totally differentiating Eqs. (15) and (17), we have:

(E1) d L = 0 z ̃ n d l z d z ,

(E2) d l z = 0 δ j z β z + i d x i d i .

Denote x i as d x i = A 1 d e + A 2 d w , where A 1 and A 2 will be calculated later. As dL = 0, combining Eqs. (E1) and (E2), we have:

(E3) 0 = 0 z ̃ 0 δ z β z + i A 1 d i d z d e + 0 z ̃ 0 δ z β z + i A 2 d i d z d w .

Then, we have:

(E4) d w d e = 0 z ̃ 0 δ z β z + i A 1 d i d z 0 z ̃ 0 δ z β z + i A 2 d i d z .

Furthermore, we calculate the numerator and the denominator of Eq. (E4) in general equilibrium. In symmetric equilibrium, the equilibrium scopes and aggregate outputs of firms are determined by:

(E5) δ 2 = 4 b ̄ 1 e w X ,

(E6) δ * 2 = 4 b ̄ 1 e w X * ,

(E7) a ̄ w + β + δ + e n + 1 4 1 e δ 2 + e n 4 1 e δ * 2 = 0 ,

(E8) a ̄ w + β * + e n 4 1 e δ 2 + δ * + e n + 1 4 1 e δ * 2 = 0 .

Totally differentiating Eqs. (E5)E8)(E8) and simplifying the equations, we obtain:

(E9) b ̄ e δ n + 1 + 2 1 e b ̄ e δ n b ̄ e δ * n b ̄ e δ * n + 1 + 2 1 e d X d X * = δ β + 1 2 δ 2 δ * β * + 1 2 ( δ * ) 2 d w b ̄ δ n + 1 2 X + δ n X * b ̄ δ * n X + δ * n + 1 2 X * d e

Solving Eq. (E9), we have:

(E10) d X = 1 Δ 0 B 1 d w 1 Δ 0 B 2 d e ,

(E11) d X * = 1 Δ 0 B 3 d w 1 Δ 0 B 4 d e ,

where Δ 0 = b ̄ 2 e 2 δ δ * 2 n + 1 + 2 1 e e δ + δ * n + 1 + 4 1 e 2 > 0 , B 1 = b ̄ e δ δ * β + 1 2 δ n + 1 n β * + 1 2 δ * + 2 b ̄ δ β + 1 2 δ 2 1 e , B 2 = b ̄ 2 δ n + 1 2 X + δ n X * e δ * n + 1 + 2 1 e b ̄ 2 e δ n δ * n X + δ * n + 1 2 X * , B 3 = b ̄ e δ n + 1 + 2 1 e δ * β * + 1 2 ( δ * ) 2 b ̄ e δ * n δ β + 1 2 δ 2 , and B 4 = b ̄ 2 e δ n + 1 + 2 1 e δ * n X + δ * n * + 1 2 X * b ̄ 2 e δ * n δ n + 1 2 X + δ n X * .

Recall that the output of a single product is given by:

(E12) x i = a ̄ c i 2 b ̄ 1 e e 2 1 e n + 1 X + n X * .

Totally differentiating Eq. (E12), we have:

(E13) d x i = 1 1 e x i 1 2 n + 1 X + n X * d e β + i 2 b ̄ 1 e d w e 2 1 e n + 1 d X + n d X * .

Combining Eqs. (E10), (E11), and (E13), we obtain:

(E14) A 1 = e 2 1 e 1 Δ n + 1 B 2 + n B 4 + 1 1 e x i 1 2 n + 1 X + n X * ,

(E15) A 2 = β + i 2 b ̄ 1 e + e 2 1 e 1 Δ n + 1 B 1 + n B 3 .

Combining Eqs. (E10), (E11) and (E14), we have:

(E16) 0 z ̃ 0 δ z β z + i A 1 d i d z = 1 1 e 0 z ̃ 0 δ z β + i A 3 d i d z + 0 z ̃ 0 δ z β + i x i d i d z ,

where A 3 = 2 β δ + δ 2 2 2 1 e X + n X + n X * + e 1 + 2 n X δ * Δ / b ̄ 2 .

Then, we have:

(E17) 0 δ z β + i x i d i X δ 0 δ z β + i d i = 0 δ z β + i x i d i 0 δ z β + δ 2 x i d i = 0 δ z i δ 2 x i d i < 0

Since 0 δ z i δ / 2 d i = 0 and x i is decreasing in i, Eq. (E17) is negative unambiguously. A 3X/δ > 0 is a sufficient condition for z ̃ * z ̃ 0 δ z β z + i A 1 d i d z < 0 .

Combining Eqs. (E5) and (E6) and denoting N 0 = N/n = δ + δ*, we have:

(E18) A 3 X / δ = w 2 1 e 1 + n + e 1 + 2 n δ * 4 1 e Δ / b ̄ N 0 2 2 w 2 e 1 + n δ * + 2 1 e + e 1 + 2 n ( δ * ) 2 4 1 e Δ / b ̄ N 0 + w δ * 2 + e δ * 1 + 2 n δ * + 4 1 e 4 1 e Δ / b ̄ .

From Eq. (E18), it is clear that A 3X/δ > 0 holds if N 0 is large enough. N 0 is a measure of the aggregate scope of variety in an industry. Therefore, if the aggregate scope of variety is large enough in all industries, 0 z ̃ 0 δ z β z + i A 1 d i d z < 0 holds.

Furthermore, from Eqs. (E7) and (E8), a ̄ is essential in the determination of the scales of δ and δ*. If a ̄ tends to be zero, δ and δ* tend to be zero, too. If a ̄ increases, the scales of δ and δ* also increase with X and X*.

However, 0 z ̃ 0 δ z β z + i A 2 d i d z is always negative. We calculate the interval z ̃ * , z ̃ first. From Eq. (E15), we have:

(E19) z ̃ * z ̃ 0 δ z β z + i A 2 d i d z = z ̃ * z ̃ δ 2 b ̄ 1 e 3 β 2 + 3 β δ + δ 2 3 + 2 β + δ e b ̄ 2 1 Δ n + 1 B 1 + n B 3 d z

Combining Eqs. (E7) and (E8), we have:

(E20) z ̃ * z ̃ 0 δ z β z + i A 2 d i d z = z ̃ * z ̃ δ 2 b ̄ 1 e δ 2 12 + 1 Δ / b ̄ 2 1 e 2 β + δ 2 1 e + e δ * β + 1 2 δ d z z ̃ * z ̃ δ 2 b ̄ 1 e 1 Δ / b ̄ 2 1 e 2 β + δ e δ * n δ * δ 1 2 + e 4 1 e δ * + δ d z

In symmetric equilibrium, we have:

(E21) 1 2 z ̃ 1 e 2 β + δ e δ * n δ * δ 1 2 + e 4 1 e δ * + δ e 2 δ δ * 2 n + 1 + 2 1 e e δ + δ * n + 1 + 4 1 e 2 d z = z ̃ * 1 2 1 e 2 β * + δ * e δ n δ δ * 1 2 + e 4 1 e δ * + δ e 2 δ δ * 2 n + 1 + 2 1 e e δ + δ * n + 1 + 4 1 e 2 d z

As β < β* and δ > δ* hold when z z ̃ * , z ̃ , with Eq. (E21), we obtain:

(E22) z ̃ * z ̃ 1 Δ 0 / b ̄ 2 1 e 2 β + δ e δ * n δ * δ 1 2 + e 4 1 e δ * + δ d z = z ̃ * 1 2 2 Δ 0 / b ̄ 2 1 e β δ * β * δ e n δ * δ 1 2 + e 4 1 e δ * + δ d z > 0

Combining Eqs. (E20) and (E22), we can find that z ̃ * z ̃ 0 δ z β z + i A 2 d i d z < 0 is proved.

Then, in the interval 0 , z ̃ * , we have δ* = 0 and X* = 0. Thus, we have:

(E23) 0 z ̃ * 0 δ z β z + i A 2 d i d z = z ̃ * z ̃ δ 2 b ̄ 1 e 24 1 e β 2 + 24 1 e β δ + δ 2 8 1 e + e δ 1 + n 12 2 1 e + e δ 1 + n d z < 0

Thus, 0 z ̃ 0 δ z β z + i A 2 d i d z < 0 always holds. Therefore, with Eq. (E4), it is clear that d w d e < 0 if and only if 0 z ̃ 0 δ z β z + i A 1 d i d z < 0 . Proposition 4 is proved.

Appendix F: The Case with Single-Product Firms

For home and foreign single-product firms, the first-order conditions can be obtained from Eqs. (10) and (13) immediately:

(F1) a ̄ β w b ̄ 2 1 e s + e s + e n s + n * s * = 0 ,

(F2) a ̄ β * w * b ̄ 2 1 e s * + e s * + e n s + n * s * = 0 .

Solving Eqs. (F1) and (F2), we obtain the equilibrium outputs:

(F3) s = a β w 2 e + β * w * β w e n * b 2 e 2 + e n + n * 1 ,

(F4) s * = a β * w * 2 e + β w β * w * e n b 2 e 2 + e n + n * 1 .

Furthermore, differentiating s with respect to e and w, we have:

(F5) s e = n + n * 1 a β w b 2 + e n + n * 1 2 n * 4 + e 2 n + n * 1 β w β * w * b 2 e 2 2 + e n + n * 1 2 ,

(F6) s w = β 2 e b 2 e 2 + e n + n * 1 β β * e n * b 2 e 2 + e n + n * 1 .

In general equilibrium, the market-clearing condition in the home labor market is given by:

(F7) L = 0 z ̃ β n x d z .

Similar to Appendix E, from Eq. (F7), the impact of product differentiation on the wage is determined by:

(F8) d w d e = 0 z ̃ β s e d z / 0 z ̃ β s w d z .

We consider the symmetric case where n = n*, L = L*, and w = w* hold. In the interval z 0 , z ̃ * , as the outputs of foreign firms are zero, it is equivalent to the case where n* = 0. Thus, Eqs. (F5) and (F6) are negative unambiguously in the interval z 0 , z ̃ * . In the interval z z ̃ * , z ̃ , we have:

(F9) z ̃ * z ̃ β β β * d z = z ̃ * 1 / 2 β β β * d z + z ̃ * 1 / 2 β * β * β d z = z ̃ * 1 / 2 β β * 2 d z > 0 .

Thus, in the interval z z ̃ * , z ̃ Eqs. (F5) and (F6) are both negative. Then, it is clear that Eq. (F8) is negative unambiguously in symmetric equilibrium. In the case with single-product firms, an increment of product differentiation increases the wage.

References

Bastos, P., and O. R. Straume. 2012. “Globalization, Product Differentiation, and Wage Inequality.” Canadian Journal of Economics 45 (3): 857–78. https://doi.org/10.1111/j.1540-5982.2012.01718.x.Suche in Google Scholar

Beladi, H., and A. Chakrabarti. 2019. “Multidivisional Firms, Internal Competition, and Comparative Advantage: Baye et al. Meet Neary.” Journal of International Economics 116: 50–7. https://doi.org/10.1016/j.jinteco.2018.10.004.Suche in Google Scholar

Beladi, H., A. Chakrabarti, and S. Marjit. 2015. “On Cross-Border Mergers and Product Differentiation.” The B.E. Journal of Economic Analysis & Policy 15 (1): 37–51. https://doi.org/10.1515/bejeap-2014-0077.Suche in Google Scholar

Bernard, A. B., S. J. Redding, and P. K. Schott. 2011. “Multiproduct Firms and Trade Liberalization.” Quarterly Journal of Economics 26 (3): 1271–318. https://doi.org/10.1093/qje/qjr021.Suche in Google Scholar

Bernhofen, D. M. 2001. “Product Differentiation, Competition, and International Trade.” Canadian Journal of Economics 34 (4): 1010–23. https://doi.org/10.1111/0008-4085.00110.Suche in Google Scholar

Besedeš, T., and T. J. Prusa. 2006. “Product Differentiation and Duration of US Import Trade.” Journal of International Economics 70 (2): 339–58. https://doi.org/10.1016/j.jinteco.2005.12.005.Suche in Google Scholar

Brander, J. A., and B. J. Spencer. 1985. “Export Subsidies and International Market Share Rivalry.” Journal of International Economics 18 (1–2): 83–100. https://doi.org/10.1016/0022-1996(85)90006-6.Suche in Google Scholar

Collie, D. R. 2016. “Gains from Variety? Product Differentiation and the Possibility of Losses from Trade under Cournot Oligopoly with Free Entry.” Economics Letters 146: 55–8. https://doi.org/10.1016/j.econlet.2016.07.017.Suche in Google Scholar

Eaton, J., and G. M. Grossman. 1986. “Optimal Trade and Industrial Policy under Oligopoly.” Quarterly Journal of Economics 101 (2): 383–406. https://doi.org/10.2307/1891121.Suche in Google Scholar

Eckel, C., and J. P. Neary. 2010. “Multi-product Firms and Flexible Manufacturing in the Global Economy.” The Review of Economic Studies 77 (1): 188–217. https://doi.org/10.1111/j.1467-937x.2009.00573.x.Suche in Google Scholar

Eckel, C., L. Iacovone, B. Javorcik, and J. P. Neary. 2015. “Multi-product Firms at Home and Away: Cost- versus Quality-Based Competence.” Journal of International Economics 95 (2): 216–32. https://doi.org/10.1016/j.jinteco.2014.12.012.Suche in Google Scholar

Eckel, C., L. Iacovone, B. Javorcik, and J. P. Neary. 2016. “Testing the Core-Competency Model of Multi-Product Exporters.” Review of International Economics 24 (4): 699–716. https://doi.org/10.1111/roie.12234.Suche in Google Scholar

Egger, H., and M. Koch. 2012. “Labour Unions and Multi-Product Firms in Closed and Open Economies.” Canadian Journal of Economics 45 (4): 1456–79. https://doi.org/10.1111/j.1540-5982.2012.01745.x.Suche in Google Scholar

Head, K., and J. Ries. 2001. “Increasing Returns versus National Product Differentiation as an Explanation for the Pattern of U.S.-Canada Trade.” The American Economic Review 91 (4): 858–76. https://doi.org/10.1257/aer.91.4.858.Suche in Google Scholar

Helpman, E. 1981. “International Trade in the Presence of Product Differentiation, Economies of Scale and Monopolistic Competition: A Chamberlin-Heckscher-Ohlin Approach.” Journal of International Economics 11 (3): 305–40. https://doi.org/10.1016/0022-1996(81)90001-5.Suche in Google Scholar

Krugman, P. 1980. “Scale Economies, Product Differentiation, and the Pattern of Trade.” The American Economic Review 70 (5): 950–9.Suche in Google Scholar

Leahy, D., and J. P. Neary. 2021. “When the Threat Is Stronger Than the Execution: Trade and Welfare under Oligopoly.” The RAND Journal of Economics 52 (3): 471–95. https://doi.org/10.1111/1756-2171.12380.Suche in Google Scholar

Manova, K., and Z. Yu. 2017. “Multi-product Firms and Product Quality.” Journal of International Economics 109: 116–37. https://doi.org/10.1016/j.jinteco.2017.08.006.Suche in Google Scholar

Neary, J. P. 2003. “Globalization and Market Structure.” Journal of the European Economic Association 1 (2–3): 245–71. https://doi.org/10.1162/154247603322390928.Suche in Google Scholar

Neary, J. P. 2007. “Cross-border Mergers as Instruments of Comparative Advantage.” The Review of Economic Studies 74 (4): 1229–57. https://doi.org/10.1111/j.1467-937x.2007.00466.x.Suche in Google Scholar

Neary, J. P. 2015. “International Trade in General Oligopolistic Equilibrium.” Review of International Economics 24 (4): 669–98. https://doi.org/10.1111/roie.12233.Suche in Google Scholar

Ottaviano, G., T. Tabuchi, and J. F. Thisse. 2002. “Agglomeration and Trade Revisited.” International Economic Review 43 (2): 409–35. https://doi.org/10.1111/1468-2354.t01-1-00021.Suche in Google Scholar

Qiu, L. D., and W. Zhou. 2013. “Multiproduct Firms and Scope Adjustment in Globalization.” Journal of International Economics 91 (1): 142–53. https://doi.org/10.1016/j.jinteco.2013.04.006.Suche in Google Scholar

Received: 2023-03-04
Accepted: 2023-09-13
Published Online: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bejte-2023-0016/html?lang=de
Button zum nach oben scrollen