Startseite Two-component controller design to safeguard data-driven predictive control
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Two-component controller design to safeguard data-driven predictive control

A tutorial exemplified with DeePC and Koopman MPC
  • Lea Bold

    Lea Bold received her M.Sc. degree in Mathematics from the Technische Universität Ilmenau, Germany, in 2021. There, she pursues a Ph.D. in Mathematics in the Optimization-based Control group. Her research focuses on data-based prediction of dynamical systems and its application in the context of system theory.

    , Lukas Lanza

    Lukas Lanza received his Bachelor’s degrees in Physics and Philosophy from the University of Münster in 2015, his Master’s degree in Mathematics from the University of Hamburg in 2019, and his PhD in Mathematics from the University of Paderborn in 2022. Since October 2022, he has been working as a Postdoc in the group Optimization-based Control at TU Ilmenau. His current research includes mathematical systems theory, safe data-driven control, predictive control with guarantees, and learning-based control.

    EMAIL logo
    und Karl Worthmann

    Karl Worthmann received his Ph.D. degree in Mathematics from the University of Bayreuth, Germany, in 2012. 2014 he became assistant professor for “Differential Equations” at Technische Universität Ilmenau (TU Ilmenau), Germany. 2019 he was promoted to full professor after receiving the Heisenberg-professorship “Optimization-based Control” by the German Research Foundation (DFG). He was recipient of the Ph.D. Award from the City of Bayreuth, Germany, and stipend of the German National Academic Foundation. 2013 he has been appointed Junior Fellow of the Society of Applied Mathematics and Mechanics (GAMM), where he served as speaker in 2014 and 2015. His current research interests include mathematical systems theory with a particular focus on nonlinear model predictive control, stability analysis, and data-driven control.

Veröffentlicht/Copyright: 28. Mai 2025

Abstract

We design a two-component controller to achieve reference tracking with output constraints – exemplified on systems of relative degree two. One component is a data-driven or learning-based predictive controller, which uses data samples to learn a model and predict the future behavior of the system. We exemplify this component concisely by data-enabled predictive control (DeePC) and by model predictive control based on extended dynamic mode decomposition (EDMD). The second component is a model-free high-gain feedback controller, which ensures satisfaction of the output constraints if that cannot be guaranteed by the predictive controller. This may be the case, for example, if too little data have been collected for learning or no (sufficient) guarantees on the approximation accuracy derived. In particular, the reactive/adaptive feedback controller can be used to support the learning process by leading safely through the state space to collect suitable data, e.g., to ensure a sufficiently-small fill distance. Numerical examples are provided to illustrate the combination of EDMD-based model predictive control and a safeguarding feedback for the set-point transitions including the transition between the set points within prescribed bounds.

Zusammenfassung

Wir entwerfen einen Zwei-Komponenten-Regler für die Referenzverfolgung mit Ausgangsbeschränkungen – exemplarisch für ein System mit Relativgrad zwei. Eine der Komponenten ist durch einen daten- bzw. lernbasierten prädiktiven Regler gegeben, wobei mittels Systemdaten ein Modell gelernt wird, das zur Vorhersage des zukünftigen Systemverhaltens genutzt wird. Für diese Komponente wird in diesem Artikel Data-enabled Predictive Control (DeePC), basierend auf dem Fundamentallemma von Willems und Koauthoren, oder modellprädiktive Regelung (MPC) mit Extended Dynamic Mode Decomposition (EDMD) kombiniert. Die zweite Komponente ist eine modellfreie hochverstärkende Ausgangsrückführung (high-gain feedback). Diese unterstützt den prädiktiven Regler, falls für diesen die Einhaltung der Ausgangsrestriktionen nicht garantiert werden kann. Dies kann der Fall sein, wenn die Approximationsgüte des Ersatzmodells aufgrund zu weniger Daten im Lernschritt unzureichend ist. Der Hochverstärkungsregler kann zudem im Lernprozess genutzt werden, indem er aktiv für die Datensammlung generierte Trajektorien nachfährt. Die Ergebnisse der Kombination aus EDMD-basierter prädiktiver Regelung und Hochverstärkungsregelung werden anhand einer numerischen Simulation am Beispiel einer Arbeitspunktstabilisierung (mit Arbeitspunktwechsel) illustriert.


Corresponding author: Lukas Lanza, Optimization-based Control Group, Institute of Mathematics, Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau, Germany, E-mail: 

Funding source: German Research Foundation DFG

Award Identifier / Grant number: 471539468 (Deutsche Forschungsgemeinschaft)

About the authors

Lea Bold

Lea Bold received her M.Sc. degree in Mathematics from the Technische Universität Ilmenau, Germany, in 2021. There, she pursues a Ph.D. in Mathematics in the Optimization-based Control group. Her research focuses on data-based prediction of dynamical systems and its application in the context of system theory.

Lukas Lanza

Lukas Lanza received his Bachelor’s degrees in Physics and Philosophy from the University of Münster in 2015, his Master’s degree in Mathematics from the University of Hamburg in 2019, and his PhD in Mathematics from the University of Paderborn in 2022. Since October 2022, he has been working as a Postdoc in the group Optimization-based Control at TU Ilmenau. His current research includes mathematical systems theory, safe data-driven control, predictive control with guarantees, and learning-based control.

Karl Worthmann

Karl Worthmann received his Ph.D. degree in Mathematics from the University of Bayreuth, Germany, in 2012. 2014 he became assistant professor for “Differential Equations” at Technische Universität Ilmenau (TU Ilmenau), Germany. 2019 he was promoted to full professor after receiving the Heisenberg-professorship “Optimization-based Control” by the German Research Foundation (DFG). He was recipient of the Ph.D. Award from the City of Bayreuth, Germany, and stipend of the German National Academic Foundation. 2013 he has been appointed Junior Fellow of the Society of Applied Mathematics and Mechanics (GAMM), where he served as speaker in 2014 and 2015. His current research interests include mathematical systems theory with a particular focus on nonlinear model predictive control, stability analysis, and data-driven control.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: We gratefully acknowledge funding by the German Research Foundation DFG (ProjectID 471539468; Deutsche Forschungsgemeinschaft) and by the Carl Zeiss Foundation (Project-ID 2011640173; VerneDCt).

  7. Data availability: Not applicable.

References

[1] T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Automat. Control, vol. 69, no. 7, pp. 4261–4274, 2024, https://doi.org/10.1109/tac.2023.3321212.Suche in Google Scholar

[2] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. M. De Moor, “A note on persistency of excitation,” Syst. Control Lett., vol. 54, no. 4, pp. 325–329, 2005, https://doi.org/10.1016/j.sysconle.2004.09.003.Suche in Google Scholar

[3] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control: In the shallows of the DeePC,” in 18th European Control Conference (ECC), 2019.10.23919/ECC.2019.8795639Suche in Google Scholar

[4] T. Faulwasser, R. Ou, G. Pan, P. Schmitz, and K. Worthmann, “Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again,” Annu. Rev. Control, vol. 55, pp. 92–117, 2023. https://doi.org/10.1016/j.arcontrol.2023.03.005.Suche in Google Scholar

[5] C. Verhoek, R. Tóth, S. Haesaert, and A. Koch, “Fundamental lemma for data-driven analysis of linear parameter-varying systems,” in 60th IEEE Conference on Decision and Control (CDC), 2021.10.1109/CDC45484.2021.9683151Suche in Google Scholar

[6] M. Alsalti, J. Berberich, V. G. Lopez, F. Allgöwer, and M. A. Müller, “Data-based system analysis and control of flat nonlinear systems,” in 60th IEEE Conference on Decision and Control (CDC), 2021.10.1109/CDC45484.2021.9683327Suche in Google Scholar

[7] P. Schmitz, T. Faulwasser, P. Rapisarda, and K. Worthmann, “A continuous-time fundamental lemma and its application in data-driven optimal control,” Syst. Control Lett., vol. 194, p. 105950, 2024, https://doi.org/10.1016/j.sysconle.2024.105950.Suche in Google Scholar

[8] D. Bertsekas, Reinforcement Learning and Optimal Control, vol. 1, Belmont, Massachusetts, Athena Scientific, 2019.Suche in Google Scholar

[9] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and autonomous control using reinforcement learning: A survey,” IEEE Transact. Neural Networks Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2017, https://doi.org/10.1109/tnnls.2017.2773458.Suche in Google Scholar PubMed

[10] F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect data-driven control formulations via regularizations and relaxations,” IEEE Trans. Automat. Control, vol. 68, no. 2, pp. 883–897, 2022, https://doi.org/10.1109/tac.2022.3148374.Suche in Google Scholar

[11] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci., vol. 17, no. 5, pp. 315–318, 1931, https://doi.org/10.1073/pnas.17.5.315.Suche in Google Scholar PubMed PubMed Central

[12] B. O. Koopman and J. von Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. U. S. A., vol. 18, no. 3, pp. 255–263, 1932, https://doi.org/10.1073/pnas.18.3.255.Suche in Google Scholar PubMed PubMed Central

[13] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern Koopman theory for dynamical systems,” SIAM Review, vol. 64, no. 2, pp. 229–340, 2022, https://doi.org/10.1137/21m1401243.Suche in Google Scholar

[14] S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi, and C. Schütte, “Data-driven approximation of the Koopman generator: Model reduction, system identification, and control,” Phys. D: Nonlinear Phenom., vol. 406, p. 132416, 2020, https://doi.org/10.1016/j.physd.2020.132416.Suche in Google Scholar

[15] M. Williams, I. Kevrekidis, and C. Rowley, “A data-driven approximation of the koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., vol. 25, no. 6, pp. 1307–1346, 2015, https://doi.org/10.1007/s00332-015-9258-5.Suche in Google Scholar

[16] A. Mauroy, Y. Susuki, and I. Mezic, Koopman Operator in Systems and Control, Cham, Switzerland, Springer, 2020.10.1007/978-3-030-35713-9Suche in Google Scholar

[17] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control,” PloS One, vol. 11, no. 2, p. e0150171, 2016, https://doi.org/10.1371/journal.pone.0150171.Suche in Google Scholar PubMed PubMed Central

[18] A. Surana, “Koopman operator based observer synthesis for control-affine nonlinear systems,” in 55th IEEE Conference on Decision and Control (CDC), 2016.10.1109/CDC.2016.7799268Suche in Google Scholar

[19] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018, https://doi.org/10.1016/j.automatica.2018.03.046.Suche in Google Scholar

[20] D. Bruder, X. Fu, and R. Vasudevan, “Advantages of bilinear Koopman realizations for the modeling and control of systems with unknown dynamics,” IEEE Rob. Autom. Lett., vol. 6, no. 3, pp. 4369–4376, 2021, https://doi.org/10.1109/lra.2021.3068117.Suche in Google Scholar

[21] L. C. Iacob, R. Tóth, and M. Schoukens, “Koopman form of nonlinear systems with inputs,” Automatica, vol. 162, 2024, p. 111525, https://doi.org/10.1016/j.automatica.2024.111525.Suche in Google Scholar

[22] M. Korda and I. Mezić, “On convergence of extended dynamic mode decomposition to the Koopman operator,” J. Nonlinear Sci., vol. 28, no. 2, pp. 687–710, 2018, https://doi.org/10.1007/s00332-017-9423-0.Suche in Google Scholar

[23] I. Mezić, “On numerical approximations of the Koopman operator,” Mathematics, vol. 10, no. 7, p. 1180, 2022, https://doi.org/10.3390/math10071180.Suche in Google Scholar

[24] C. Zhang and E. Zuazua, “A quantitative analysis of Koopman operator methods for system identification and predictions,” C. R. Mec., vol. 351, no. S1, pp. 721–751, 2023, https://doi.org/10.5802/crmeca.138.Suche in Google Scholar

[25] F. Nüske, S. Peitz, F. Philipp, M. Schaller, and K. Worthmann, “Finite-data error bounds for Koopman-based prediction and control,” J. Nonlinear Sci., vol. 33, no. 14, 2023, https://doi.org/10.1007/s00332-022-09862-1.Suche in Google Scholar

[26] F. M. Philipp, M. Schaller, S. Boshoff, S. Peitz, F. Nüske, and K. Worthmann, “Variance representations and convergence rates for data-driven approximations of Koopman operators,” ArXiv preprint arXiv:2402.02494, 2024.Suche in Google Scholar

[27] L. Bold, L. Grüne, M. Schaller, and K. Worthmann, “Data-driven MPC with stability guarantees using extended dynamic mode decomposition,” IEEE Trans. Automat. Control, vol. 70, no. 1, pp. 534–541, 2024. https://doi.org/10.1109/tac.2024.3431169.Suche in Google Scholar

[28] R. Strässer, M. Schaller, K. Worthmann, J. Berberich, and F. Allgöwer, “Koopman-based feedback design with stability guarantees,” IEEE Trans. Automat. Control, vol. 70, no. 1, pp. 355–370, 2024. https://doi.org/10.1109/tac.2024.3425770.Suche in Google Scholar

[29] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman operator,” Annu. Rev. Fluid. Mech., vol. 45, no. 1, pp. 357–378, 2013. https://doi.org/10.1146/annurev-fluid-011212-140652.Suche in Google Scholar

[30] I. Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dyn., vol. 41, nos. 1–3, pp. 309–325, 2005, https://doi.org/10.1007/s11071-005-2824-x.Suche in Google Scholar

[31] D. Goswami and D. A. Paley, “Bilinearization, reachability, and optimal control of control-affine nonlinear systems: A Koopman spectral approach,” IEEE Trans. Automat. Control, vol. 67, no. 6, pp. 2715–2728, 2021, https://doi.org/10.1109/tac.2021.3088802.Suche in Google Scholar

[32] S. Klus, F. Nüske, and B. Hamzi, “Kernel-based approximation of the Koopman generator and Schrödinger operator,” Entropy, vol. 22, no. 7, p. 722, 2020, https://doi.org/10.3390/e22070722.Suche in Google Scholar PubMed PubMed Central

[33] F. M. Philipp, M. Schaller, K. Worthmann, S. Peitz, and F. Nüske, “Error bounds for kernel-based approximations of the Koopman operator,” Appl. Comput. Harmon. Anal., vol. 71, p. 101657, 2024, https://doi.org/10.1016/j.acha.2024.101657.Suche in Google Scholar

[34] F. Köhne, F. M. Philipp, M. Schaller, A. Schiela, and K. Worthmann, “L∞-error bounds for approximations of the Koopman operator by kernel extended dynamic mode decomposition,” SIAM J. Appl. Dyn. Syst., 2024, To appear (arXiv preprint arXiv:2403.18809).10.1137/24M1650120Suche in Google Scholar

[35] L. Bold, F. M. Philipp, M. Schaller, and K. Worthmann, “Kernel-based Koopman approximants for control: Flexible sampling, error analysis, and stability,” Preprint arXiv:2412.02811, 2024.Suche in Google Scholar

[36] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,” J. Mach. Learn. Res., vol. 16, no. 1, 2015.Suche in Google Scholar

[37] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model predictive control: Toward safe learning in control,” Annu. Rev. Control, Robot., Autonom. Syst., vol. 3, no. 1, pp. 269–296, 2020, https://doi.org/10.1146/annurev-control-090419-075625.Suche in Google Scholar

[38] M. Osborne, H.-S. Shin, and A. Tsourdos, “A review of safe online learning for nonlinear control systems,” in International Conference on Unmanned Aircraft Systems (ICUAS), 2021.10.1109/ICUAS51884.2021.9476765Suche in Google Scholar

[39] M. Chen and C. J. Tomlin, “Hamilton–Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management,” Annu. Rev. Control, Robot., Autonom. Syst., vol. 1, no. 1, 2018.10.1146/annurev-control-060117-104941Suche in Google Scholar

[40] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 18th European Control Conference (ECC), 2019.10.23919/ECC.2019.8796030Suche in Google Scholar

[41] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learning,” J. Mach. Learn. Res., vol. 3, pp. 803–832, 2002.Suche in Google Scholar

[42] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust learning-based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216–1226, 2013, https://doi.org/10.1016/j.automatica.2013.02.003.Suche in Google Scholar

[43] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for learning-based control of constrained nonlinear dynamical systems,” Automatica, vol. 129, p. 109597, 2021, https://doi.org/10.1016/j.automatica.2021.109597.Suche in Google Scholar

[44] K. P. Wabersich and M. N. Zeilinger, “Predictive control barrier functions: Enhanced safety mechanisms for learning-based control,” IEEE Trans. Automat. Control, vol. 68, no. 5, pp. 2638–2651, 2022, https://doi.org/10.1109/tac.2022.3175628.Suche in Google Scholar

[45] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, West Sussex, England, John Wiley & Sons, 2005.Suche in Google Scholar

[46] M. Araki and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. Control Autom. Syst., vol. 1, no. 4, 2003.Suche in Google Scholar

[47] J. Sánchez, A. Visioli, and S. Dormido, “A two-degree-of-freedom PI controller based on events,” J. Process Control, vol. 21, no. 4, pp. 639–651, 2011, https://doi.org/10.1016/j.jprocont.2010.12.001.Suche in Google Scholar

[48] S. Drücker, L. Lanza, T. Berger, T. Reis, and R. Seifried, “Experimental validation for the combination of funnel control with a feedforward control strategy,” Multibody Syst. Dyn., vol. 63, pp. 105–123, 2024. https://doi.org/10.1007/s11044-024-09976-2.Suche in Google Scholar

[49] P. Schmitz, L. Lanza, and K. Worthmann, “Safe data-driven reference tracking with prescribed performance,” in 27th International Conference on System Theory, Control and Computing (ICSTCC), IEEE, 2023, pp. 454–460.10.1109/ICSTCC59206.2023.10308521Suche in Google Scholar

[50] S. Gottschalk, L. Lanza, K. Worthmann, and K. Lux-Gottschalk, “Reinforcement learning for docking maneuvers with prescribed performance,” IFAC-PapersOnLine, vol. 58, no. 17, pp. 196–201, 2024, https://doi.org/10.1016/j.ifacol.2024.10.163.Suche in Google Scholar

[51] T. Johannink, et al.., “Residual reinforcement learning for robot control,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2019.10.1109/ICRA.2019.8794127Suche in Google Scholar

[52] L. Lanza, et al.., “Sampled-data funnel control and its use for safe continual learning,” Syst. Control Lett., vol. 192, p. 105892, 2024. https://doi.org/10.1016/j.sysconle.2024.105892.Suche in Google Scholar

[53] T. Berger, A. Ilchmann, and E. P. Ryan, “Funnel control of nonlinear systems,” Math. Control, Signals, Syst., vol. 33, pp. 151–194, 2021, https://doi.org/10.1007/s00498-021-00277-z.Suche in Google Scholar

[54] A. Ilchmann, E. P. Ryan, and C. J. Sangwin, “Tracking with prescribed transient behaviour,” ESAIM Control, Optim. Calc. Var., vol. 7, pp. 471–493, 2002. https://doi.org/10.1051/cocv:2002064.10.1051/cocv:2002064Suche in Google Scholar

[55] G. BastosJr, R. Seifried, and O. Brüls, “Analysis of stable model inversion methods for constrained underactuated mechanical systems,” Mech. Mach. Theor., vol. 111, pp. 99–117, 2017, https://doi.org/10.1016/j.mechmachtheory.2017.01.011.Suche in Google Scholar

[56] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Trans. Automat. Control, vol. 65, no. 3, pp. 909–924, 2019, https://doi.org/10.1109/tac.2019.2959924.Suche in Google Scholar

[57] C. De Persis and P. Tesi, “Learning controllers for nonlinear systems from data,” Annu. Rev. Control, vol. 56, p. 100915, 2023, https://doi.org/10.1016/j.arcontrol.2023.100915.Suche in Google Scholar

[58] T. Liu and Z.-P. Jiang, “Event-based control of nonlinear systems with partial state and output feedback,” Automatica, vol. 53, pp. 10–22, 2015, https://doi.org/10.1016/j.automatica.2014.12.027.Suche in Google Scholar

[59] J. Lunze and D. Lehmann, “A state-feedback approach to event-based control,” Automatica, vol. 46, no. 1, pp. 211–215, 2010, https://doi.org/10.1016/j.automatica.2009.10.035.Suche in Google Scholar

[60] D. E. Quevedo, V. Gupta, W.-J. Ma, and S. Yüksel, “Stochastic stability of event-triggered anytime control,” IEEE Trans. Automat. Control, vol. 59, no. 12, pp. 3373–3379, 2014, https://doi.org/10.1109/tac.2014.2351952.Suche in Google Scholar

[61] C. P. Bechlioulis and G. A. Rovithakis, “A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems,” Automatica, vol. 50, no. 4, pp. 1217–1226, 2014, https://doi.org/10.1016/j.automatica.2014.02.020.Suche in Google Scholar

[62] C. P. Bechlioulis and G. A. Rovithakis, “Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems,” IEEE Trans. Automat. Control, vol. 55, no. 5, pp. 1220–1226, 2010, https://doi.org/10.1109/tac.2010.2042508.Suche in Google Scholar

[63] T. Berger, D. Dennstädt, L. Lanza, and K. Worthmann, “Robust funnel model predictive control for output tracking with prescribed performance,” SIAM J. Control Optim., vol. 62, no. 4, pp. 2071–2097, 2024, https://doi.org/10.1137/23m1551195.Suche in Google Scholar

[64] A. Mauroy and J. Goncalves, “Koopman-based lifting techniques for nonlinear systems identification,” IEEE Trans. Automat. Control, vol. 65, no. 6, pp. 2550–2565, 2019, https://doi.org/10.1109/tac.2019.2941433.Suche in Google Scholar

[65] A. Mauroy and J. Goncalves, “Linear identification of nonlinear systems: A lifting technique based on the Koopman operator,” in 55th IEEE Conference on Decision and Control (CDC), 2016.10.1109/CDC.2016.7799269Suche in Google Scholar

[66] P. van Goor, R. Mahony, M. Schaller, and K. Worthmann, “Reprojection methods for Koopman-based modelling and prediction,” in 62nd IEEE Conference on Decision and Control (CDC), 2023.10.1109/CDC49753.2023.10383796Suche in Google Scholar

[67] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM J. Appl. Dyn. Syst., vol. 15, no. 1, pp. 142–161, 2016, https://doi.org/10.1137/15m1013857.Suche in Google Scholar

[68] H. H. Asada and J. A. Solano-Castellanos, “Control-coherent Koopman modeling: A physical modeling approach,” arXiv preprint arXiv:2403.16306, 2024.10.1109/CDC56724.2024.10886771Suche in Google Scholar

[69] S. Peitz, S. E. Otto, and C. W. Rowley, “Data-driven model predictive control using interpolated Koopman generators,” SIAM J. Appl. Dyn. Syst., vol. 19, no. 3, pp. 2162–2193, 2020, https://doi.org/10.1137/20m1325678.Suche in Google Scholar

[70] C. Folkestad and J. W. Burdick, “Koopman NMPC: Koopman-based learning and nonlinear model predictive control of control-affine systems,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.10.1109/ICRA48506.2021.9562002Suche in Google Scholar

[71] A. Narasingam, S. H. Son, and J.S.-I. Kwon, “Data-driven feedback stabilisation of nonlinear systems: Koopman-based model predictive control,” Int. J. Control, vol. 96, no. 3, pp. 770–781, 2023, https://doi.org/10.1080/00207179.2021.2013541.Suche in Google Scholar

[72] M. Rosenfelder, L. Bold, H. Eschmann, P. Eberhard, K. Worthmann, and H. Ebel, “Data-driven predictive control of nonholonomic robots based on a bilinear Koopman realization: Data does not replace geometry,” arXiv preprint arXiv:2411.07192, 2024.Suche in Google Scholar

[73] L. Grüne, J. Pannek, M. Seehafer, and K. Worthmann, “Analysis of unconstrained nonlinear MPC schemes with time varying control horizon,” SIAM J. Control Optim., vol. 48, no. 8, pp. 4938–4962, 2010, https://doi.org/10.1137/090758696.Suche in Google Scholar

[74] A. Boccia, L. Grüne, and K. Worthmann, “Stability and feasibility of state constrained MPC without stabilizing terminal constraints,” Syst. Control Lett., vol. 72, pp. 14–21, 2014, https://doi.org/10.1016/j.sysconle.2014.08.002.Suche in Google Scholar

[75] L. Bold, M. Rosenfelder, H. Eschmann, H. Ebel, and K. Worthmann, “On Koopman-based surrogate models for non-holonomic robots,” IFAC-PapersOnLine, vol. 58, no. 21, pp. 55–60, 2024, https://doi.org/10.1016/j.ifacol.2024.10.142.Suche in Google Scholar

[76] M. Korda and I. Mezić, “Optimal construction of Koopman eigenfunctions for prediction and control,” IEEE Trans. Automat. Control, vol. 65, no. 12, pp. 5114–5129, 2020, https://doi.org/10.1109/tac.2020.2978039.Suche in Google Scholar

[77] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-based method for data-driven koopman spectral analysis,” J. Comput. Dynam., vol. 2, no. 2, 2016.Suche in Google Scholar

[78] H. Wendland, Scattered Data Approximation, vol. 17, Cambridge, England, Cambridge University Press, 2004.10.1017/CBO9780511617539Suche in Google Scholar

[79] L. Bold, M. Schaller, I. Schimperna, and K. Worthmann, “Kernel EDMD for data-driven nonlinear Koopman MPC with stability guarantees,” Preprint arxiv:2501.08709, 2025.Suche in Google Scholar

[80] R. Soloperto, J. Köhler, and F. Allgöwer, “A nonlinear MPC scheme for output tracking without terminal ingredients,” IEEE Trans. Automat. Control, vol. 68, no. 4, pp. 2368–2375, 2022, https://doi.org/10.1109/tac.2022.3173494.Suche in Google Scholar

Received: 2024-11-20
Accepted: 2025-01-28
Published Online: 2025-05-28
Published in Print: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2024-0166/html?lang=de
Button zum nach oben scrollen