Startseite Technik Evaluation of methods for feasible parameter set estimation of Takagi-Sugeno models for nonlinear regression with bounded errors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of methods for feasible parameter set estimation of Takagi-Sugeno models for nonlinear regression with bounded errors

  • Felix Wittich

    Felix Wittich, M. Sc., is a research associate at the Department of Measurement and Control at the University of Kassel. His research interests include system identification, data-driven modeling, and machine learning.

    EMAIL logo
    und Andreas Kroll

    Univ.-Prof. Dr.-Ing. Andreas Kroll is head of the Department of Measurement and Control at the University of Kassel. His research areas include nonlinear identification and control methods, computational intelligence, and complex systems.

Veröffentlicht/Copyright: 1. Oktober 2021

Abstract

In data-driven modeling besides the point estimate of the model parameters, an estimation of the parameter uncertainty is of great interest. For this, bounded error parameter estimation methods can be used. These are particularly interesting for problems where the stochastical properties of the random effects are unknown and cannot be determined. In this paper, different methods for obtaining a feasible parameter set are evaluated for the use with Takagi-Sugeno models. Case studies with simulated data and with measured data from a manufacturing process are presented.

Zusammenfassung

Bei der datengetriebenen Modellierung ist neben der Punktschätzung der Modellparameter eine Schätzung der Parameterunsicherheit von großem Interesse. Hierfür kann eine Parameterschätzung, basierend auf Fehlerschranken, eingesetzt werden. Diese Verfahren sind insbesondere interessant, wenn die stochastischen Eigenschaften der Zufallseffekte unbekannt sind und nicht bestimmt werden können. In diesem Beitrag werden verschiedene Verfahren untersucht, um zulässige Parametermengen bei garantierten Fehlerschranken für die Schätzung von Takagi-Sugeno-Modellen zu erhalten. Dazu werden Fallstudien mit simulierten Daten und mit gemessenen Daten aus einem Fertigungsprozess vorgestellt.

Award Identifier / Grant number: KR 3795/8-1

Funding statement: The scientific work has been supported by the DFG within the research priority program SPP 2086 (KR 3795/8-1).

About the authors

Felix Wittich

Felix Wittich, M. Sc., is a research associate at the Department of Measurement and Control at the University of Kassel. His research interests include system identification, data-driven modeling, and machine learning.

Andreas Kroll

Univ.-Prof. Dr.-Ing. Andreas Kroll is head of the Department of Measurement and Control at the University of Kassel. His research areas include nonlinear identification and control methods, computational intelligence, and complex systems.

Acknowledgment

The authors thank the DFG for this funding and intensive technical support. Furthermore we would like to thank the anonymous reviewers for their comments that helped to improve and clarify this manuscript. The authors would also like to thank the Institute of Machining Operations at TU Dortmund for performing the hard turning operations and the Institute for Materials Engineering at University of Kassel for conducting the residual stress measurements.

References

1. D. Avis and K. Fukuda. “A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra”. Discrete & Computational Geometry 8.3 (1992), pp. 295–313.10.1145/109648.109659Suche in Google Scholar

2. A. Bempora, A. Garulli, S. Paoletti and A. Vicino. “A bounded-error approach to piecewise affine system identification”. IEEE Transactions on Automatic Control 50.10 (2005), pp. 1567–1580.10.1109/TAC.2005.856667Suche in Google Scholar

3. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2019.Suche in Google Scholar

4. W. Chai. “Robust nonlinear parameter estimation for bounded error models using Isomap”. In: 2015 IEEE International Conference on Information and Automation. 2015.10.1109/ICInfA.2015.7279778Suche in Google Scholar

5. G. Favier and L. V. R. Arruda. “Review and comparison of ellipsoidal bounding algorithms”. In: Bounding Approaches to System Identification. Springer, 1996, pp. 43–68.10.1007/978-1-4757-9545-5_4Suche in Google Scholar

6. E. Fogel and Y. Huang. “On the value of information in system identification – bounded noise case”. Automatica 18.2 (1982), pp. 229–238.10.1016/0005-1098(82)90110-8Suche in Google Scholar

7. K. Fukuda and A. Prodon. “Double description method revisited”. In: Combinatorics and Computer Science. Springer, 1996, pp. 91–111.10.1007/3-540-61576-8_77Suche in Google Scholar

8. B. Genov. “The convex Hull Problem in Practice: Improving the Running Time of the Double Description Method”. PhD thesis. Universitat Bremen, 2014.Suche in Google Scholar

9. J. E. Goodman, J. O’Rourke and C. D. Toth. Handbook of Discrete and Computational Geometry. Taylor & Francis, 2017.Suche in Google Scholar

10. B. Grunbaum. Convex Polytopes. Ed. by V. Kaibel, V. Klee and G. M. Ziegler. Springer, 2003.10.1007/978-1-4613-0019-9Suche in Google Scholar

11. M. Herceg, M. Kvasnica, C. Jones and M. Morari. “Multi-Parametric Toolbox 3.0”. In: Proc. of the European Control Conference. Zurich, Switzerland, 2013, pp. 502–510.10.23919/ECC.2013.6669862Suche in Google Scholar

12. P. Herrero, P. Georgiou, C. Toumazou, B. Delaunay and L. Jaulin. “An efficient implementation of SIVIA algorithm in a high-level numerical programming language”. In: Reliable Computing (2012), pp. 239–251.Suche in Google Scholar

13. L. Jaulin, M. Kieffer, O. Didrit and E. Walter. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, 2012.Suche in Google Scholar

14. E. Kaucher. “Interval analysis in the extended interval space IR”. In: Computing Supplementum. Springer, 1980, pp. 33–49.10.1007/978-3-7091-8577-3_3Suche in Google Scholar

15. K. J. Keesman and R. Stappers. “Nonlinear set-membership estimation: A support vector machine approach”. Journal of Inverse and Ill-posed Problems 12.1 (2004), pp. 27–41.10.1515/156939404773972752Suche in Google Scholar

16. J. Korbicz and M. Kowal. “Neuro-fuzzy networks and their application to fault detection of dynamical systems”. Engineering Applications of Artificial Intelligence 20.5 (2007), pp. 609–617.10.1016/j.engappai.2006.11.009Suche in Google Scholar

17. A. Kroll. Computational Intelligence. Probleme, Methoden und technische Anwendungen. 2nd ed., De Gruyter, Oldenbourg, 2016.10.1515/9783110401776Suche in Google Scholar

18. M. Lebsanft, M. Tiffe, A. Zabel, W. Zinn, D. Biermann and B. Scholtes. “Residual stresses in different heat treated workpieces after turning”. Advanced Materials Research 996 (2014), pp. 652—657.10.4028/www.scientific.net/AMR.996.652Suche in Google Scholar

19. T. H. Matheiss and D. S. Rubin. “A survey and comparison of methods for finding all vertices of convex polyhedral sets”. Mathematics of Operations Research 5.2 (1980), pp. 167–185.10.1287/moor.5.2.167Suche in Google Scholar

20. M. Milanese, J. Norton, H. Piet-Lahanier and E. Walter, eds. Bounding Approaches to System Identification. Springer, 1996.10.1007/978-1-4757-9545-5Suche in Google Scholar

21. T. S. Motzkin, H. Raiffa, G. L. Thompson and R. M. Thrall. “3. The double description method”. In: Contributions to the Theory of Games (AM-28), Volume II. Princeton University Press, 1953, pp. 51–74.10.1515/9781400881970-004Suche in Google Scholar

22. B. Mrugalska. “A bounded-error approach to actuator fault diagnosis and remaining useful life prognosis of Takagi-Sugeno fuzzy systems”. ISA Transactions 80 (2018), pp. 257–266.10.1016/j.isatra.2018.07.010Suche in Google Scholar PubMed

23. J. Norton. “Recursive computation of inner bounds for the parameters of linear models”. International Journal of Control 50.6 (1989), pp. 2423–2430.10.1080/00207178908953508Suche in Google Scholar

24. L. Pronzato and E. Walter. Identification of Parametric Models. Springer London, 1997.Suche in Google Scholar

25. H. Sasahara. “The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45C steel”. International Journal of Machine Tools and Manufacture 45.2 (2005), pp. 131–136.10.1016/j.ijmachtools.2004.08.002Suche in Google Scholar

26. A. Schrodt and A. Kroll. “On iterative closed-loop identification using affine Takagi-Sugeno models and controllers”. International Journal of Fuzzy Systems 19.6 (2017), pp. 1978–1988.10.1007/s40815-016-0290-xSuche in Google Scholar

27. F. Schweppe. “Recursive state estimation: Unknown but bounded errors and system inputs”. IEEE Transactions on Automatic Control 13.1 (1968), pp. 22–28.10.1109/SAP.1967.272985Suche in Google Scholar

28. E. Walter and H. Piet-Lahanier. “Estimation of parameter bounds from bounded-error data: a survey”. Mathematics and Computers in Simulation 32.5-6 (1990), pp. 449–468.10.1016/0378-4754(90)90002-ZSuche in Google Scholar

29. E. Walter and H. Piet-Lahanier. “Guaranteed linear and nonlinear parameter estimation from bounded-error data: A survey”. In: IEEE International Symposium on Circuits and Systems. 1993.Suche in Google Scholar

30. H. Witsenhausen. “Sets of possible states of linear systems given perturbed observations”. IEEE Transactions on Automatic Control 13.5 (1968), pp. 556–558.10.1109/TAC.1968.1098995Suche in Google Scholar

31. F. Wittich, M. Kahl, A. Kroll, W. Zinn and T. Niendorf. “On nonlinear empirical modeling of residual stress profiles in hard turning”. In: Proceedings IEEE International Conference on Systems, Man, and Cybernetics. Bari, Italy, 2019.10.1109/SMC.2019.8914272Suche in Google Scholar

32. S. Zaiser, M. Buchholz and K. Dietmayer. “Black-box modeling with uncertain parameters from measurement data with unknown, but bounded errors”. at - Automatisierungstechnik 62.9 (2014), pp. 607–618.10.1515/auto-2014-1084Suche in Google Scholar

Received: 2020-11-06
Accepted: 2021-07-14
Published Online: 2021-10-01
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2020-0157/pdf?lang=de
Button zum nach oben scrollen