Home Odd-quadratic Leibniz superalgebras
Article
Licensed
Unlicensed Requires Authentication

Odd-quadratic Leibniz superalgebras

  • Saïd Benayadi EMAIL logo and Fahmi Mhamdi
Published/Copyright: March 8, 2019

Abstract

An odd-quadratic Leibniz superalgebra is a (left or right) Leibniz superalgebra with an odd, supersymmetric, non-degenerate and invariant bilinear form. In this paper, we prove that a left (resp. right) Leibniz superalgebra that carries this structure is symmetric (meaning that it is simultaneously a left and a right Leibniz superalgebra). Moreover, we show that any non-abelian (left or right) Leibniz superalgebra does not possess simultaneously a quadratic and an odd-quadratic structure. Further, we obtain an inductive description of odd-quadratic Leibniz superalgebras using the procedure of generalized odd double extension and we reduce the study of this class of Leibniz superalgebras to that of odd-quadratic Lie superalgebras. Finally, several non-trivial examples of odd-quadratic Leibniz superalgebras are included.

Acknowledgements

The authors are very grateful to the SMT for its organization of the 23rd conference March 19–22, 2018, in Tabarka, its kind invitation and hospitality.

References

[1] H. Albuquerque, E. Barreiro and S. Benayadi, Quadratic Lie superalgebras with a reductive even part, J. Pure Appl. Algebra 213 (2009), no. 5, 724–731. 10.1016/j.jpaa.2008.09.016Search in Google Scholar

[2] H. Albuquerque, E. Barreiro and S. Benayadi, Odd-quadratic Lie superalgebras, J. Geom. Phys. 60 (2010), no. 2, 230–250. 10.1016/j.geomphys.2009.09.013Search in Google Scholar

[3] H. Albuquerque and S. Benayadi, Quadratic Malcev superalgebras, J. Pure Appl. Algebra 187 (2004), no. 1–3, 19–45. 10.1016/S0022-4049(03)00145-2Search in Google Scholar

[4] I. Ayadi, Super-algèbres non associatives avec des structures homogènes, Doctoral Thesis, Université Paul Verlaine-Metz, 2011. Search in Google Scholar

[5] I. Ayadi, H. Benamor and S. Benayadi, Lie superalgebras with some homogeneous structures, J. Algebra Appl. 11 (2012), no. 5, Article ID 1250095. 10.1142/S0219498812500958Search in Google Scholar

[6] I. Ayadi and S. Benayadi, Associative superalgebras with homogeneous symmetric structures, Comm. Algebra 40 (2012), no. 4, 1234–1259. 10.1080/00927872.2010.549160Search in Google Scholar

[7] S. A. Ayupov, B. A. Omirov and A. K. Khudoyberdiyev, The classification of filiform Leibniz superalgebras of nilindex n+m, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 2, 171–190. 10.1007/s10114-008-6341-ySearch in Google Scholar

[8] I. Bajo, S. Benayadi and M. Bordemann, Generalized double extension and descriptions of quadratic Lie superalgebras, preprint (2007), https://arxiv.org/abs/0712.0228. Search in Google Scholar

[9] A. Baklouti, W. Ben Salah and S. Mansour, Solvable pseudo-Euclidean Jordan superalgebras, Comm. Algebra 41 (2013), no. 7, 2441–2466. 10.1080/00927872.2012.660256Search in Google Scholar

[10] E. Barreiro, Odd-quadratic Malcev superalgebras, Algebra Discrete Math. 9 (2010), no. 2, 11–38. Search in Google Scholar

[11] H. Benamor and S. Benayadi, Double extension of quadratic Lie superalgebras, Comm. Algebra 27 (1999), no. 1, 67–88. 10.1080/00927879908826421Search in Google Scholar

[12] S. Benayadi and M. Boucetta, Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures, Differential Geom. Appl. 36 (2014), 66–89. 10.1016/j.difgeo.2014.07.006Search in Google Scholar

[13] S. Benayadi and S. Hidri, Quadratic Leibniz algebras, J. Lie Theory 24 (2014), no. 3, 737–759. Search in Google Scholar

[14] S. Benayadi, F. Mhamdi and S. Omri, Quadratic (resp. Symmetric) Leibniz Superalgebras. Search in Google Scholar

[15] A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965), 471–473. Search in Google Scholar

[16] A. Bloh, Cartan–Eilenberg homology theory for a generalized class of Lie algebras (in Russian), Dokl. Akad. Nauk SSSR. 175 (1967), no. 2, 266–268; translation in Soviet Math. Dokl. 8 (1967), 824-826. Search in Google Scholar

[17] A. S. Dzhumadil’daev, Cohomologies of colour Leibniz algebras: Pre-simplicial approach, Lie Theory and its Applications in Physics III, World Scientific, Singapore (2000), 124–135. Search in Google Scholar

[18] J. R. Gómez, R. M. Navarro and B. A. Omirov, On nilpotent Leibniz superalgebras, preprint (2006), https://arxiv.org/abs/math/0611723. Search in Google Scholar

[19] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96. 10.1016/0001-8708(77)90017-2Search in Google Scholar

[20] D. Liu and N. Hu, Leibniz superalgebras and central extensions, J. Algebra Appl. 5 (2006), no. 6, 765–780. 10.1142/S0219498806001983Search in Google Scholar

[21] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3–4, 269–293. Search in Google Scholar

[22] G. Mason and G. Yamskulna, Leibniz algebras and Lie algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper No. 063. 10.3842/SIGMA.2013.063Search in Google Scholar

[23] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), no. 3, 553–561. 10.24033/asens.1496Search in Google Scholar

[24] M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math. 716, Springer, Berlin, 1979. 10.1007/BFb0070929Search in Google Scholar

Received: 2018-10-13
Accepted: 2019-01-12
Published Online: 2019-03-08
Published in Print: 2019-10-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apam-2018-0167/html?lang=en
Scroll to top button