Abstract
We give the system of Laguerre–Freud equations for the recurrence coefficients
Acknowledgements
Grateful thanks go to Professor Francisco Marcellán for his careful reading, his constructive suggestions and his valuable comments on this paper which improved its presentation and readability. Special thanks go to the referee for his valuable comments and for his careful reading of the manuscript.
References
[1]
J. Alaya and P. Maroni,
Symmetric Laguerre–Hahn forms of class
[2] N. Barhoumi, Characterizations of a special family of Laguerre–Hahn forms of class one, Adv. Pure Appl. Math. 8 (2017), no. 1, 65–76. 10.1515/apam-2016-0006Search in Google Scholar
[3]
S. Belmehdi,
On semi-classical linear functionals of class
[4] H. Bouakkaz, Les polynômes orthogonaux de Laguerre–Hahn de classe zéro, Thèse de Doctorat, Université Pierre et Marie Curie, Paris, 1990. Search in Google Scholar
[5] T. S. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl. 13, Gordon and Breach Science, New York, 1978, Search in Google Scholar
[6] J. Dini, Sur les formes linéaires et les polynômes orthogonaux de Laguerre–Hahn, Thèse, Université Pierre et Marie Curie, Paris, 1988. Search in Google Scholar
[7] J. Dini, P. Maroni and A. Ronveaux, Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux, Portugal. Math. 46 (1989), no. 3, 269–282. Search in Google Scholar
[8] H. Dueñas, F. Marcellán and E. Prianes, Perturbations of Laguerre–Hahn functional: modification by the derivative of a Dirac delta, Integral Transforms Spec. Funct. 20 (2009), no. 1–2, 59–77. 10.1080/10652460802493177Search in Google Scholar
[9] J. Dzoumba, Sur les polynômes de Laguerre–Hahn, Thèse de 3ème cycle, Uiversité Pierre et Marie Curie, Paris, 1985. Search in Google Scholar
[10] G. Filipuk and M. N. Rebocho, Discrete Painlevé equations for recurrence coefficients of Laguerre–Hahn orthogonal polynomials of class one, Integral Transforms Spec. Funct. 27 (2016), no. 7, 548–565. 10.1080/10652469.2016.1160903Search in Google Scholar
[11] A. Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials, Padé Approximation and its Applications (Bad Honnef 1983), Lecture Notes in Math. 1071, Springer, Berlin (1984), 213–230. 10.1007/BFb0099620Search in Google Scholar
[12] F. Marcellán and E. Prianes, Perturbations of Laguerre–Hahn linear functionals, J. Comput. Appl. Math. 105 (1999), no. 1–2, 109–128. 10.1016/S0377-0427(99)00025-4Search in Google Scholar
[13]
P. Maroni,
Sur la suite de polynômes orthogonaux associée à la forme
[14] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, Orthogonal Polynomials and Their Applications (Erice 1990), IMACS Ann. Comput. Appl. Math. 9, Baltzer, Basel (1991), 95–130. Search in Google Scholar
[15] P. Maroni, Sur la décomposition quadratique d’une suite de polynômes orthogonaux. II, Portugal. Math. 50 (1993), no. 3, 305–329. Search in Google Scholar
[16]
P. Maroni and M. Mejri,
The symmetric
[17] M. Sghaier and J. Alaya, Orthogonal polynomials associated with some modifications of a linear form, Methods Appl. Anal. 11 (2004), no. 2, 267–293. 10.4310/MAA.2004.v11.n2.a6Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- 23rd Meeting of the Tunisian Mathematical Society (March 2018, Tabarka, Tunisia)
- Odd-quadratic Leibniz superalgebras
- Construction and stability of type I blowup solutions for non-variational semilinear parabolic systems
- Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces
- A virtual element method for a biharmonic Steklov eigenvalue problem
- Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problem
- Dynamics of an ecological system
- Hilbert space valued Gabor frames in weighted amalgam spaces
- Laguerre–Freud equations associated with the D-Laguerre–Hahn forms of class one
- A weighted inequality for potential type operators
- W-semisymmetric generalized Sasakian-space-forms
- Proximal point algorithm involving fixed point of nonexpansive mapping in 𝑝-uniformly convex metric space
- Existence of positive solutions for a Neumann boundary value problem on the half-line via coincidence degree
- Multi-norm structure based on enveloping 𝐶∗-algebras
- Multiplicative convolution of real asymmetric and real anti-symmetric matrices
Articles in the same Issue
- Frontmatter
- 23rd Meeting of the Tunisian Mathematical Society (March 2018, Tabarka, Tunisia)
- Odd-quadratic Leibniz superalgebras
- Construction and stability of type I blowup solutions for non-variational semilinear parabolic systems
- Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces
- A virtual element method for a biharmonic Steklov eigenvalue problem
- Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problem
- Dynamics of an ecological system
- Hilbert space valued Gabor frames in weighted amalgam spaces
- Laguerre–Freud equations associated with the D-Laguerre–Hahn forms of class one
- A weighted inequality for potential type operators
- W-semisymmetric generalized Sasakian-space-forms
- Proximal point algorithm involving fixed point of nonexpansive mapping in 𝑝-uniformly convex metric space
- Existence of positive solutions for a Neumann boundary value problem on the half-line via coincidence degree
- Multi-norm structure based on enveloping 𝐶∗-algebras
- Multiplicative convolution of real asymmetric and real anti-symmetric matrices